

Stonestreet Green Solar

Environmental Statement Volume 4: Appendices Chapter 11: Land Contamination Appendix 11.3: Ground Investigation Report

PINS Ref: EN010135 Doc Ref. 5.4 Version 1 June 2024

APFP Regulation 5(2)(a) Planning Act 2008 The Infrastructure Planning (Applications: Prescribed Forms and Procedure) Regulations 2009

CONTENTS

EXE	CUTIVE SUMMARY	1
1	INTRODUCTION	3
2	BASELINE CONDITIONS	6
3	PHASE II GROUND INVESTIGATION WORKS	8
4	RESULTS OF PHASE II GROUND INVESTIGATION	. 10
5	GEOTECHNICAL SUMMARY	. 14
6	CONTAMINATION ASSESSMENT	. 16
7	CONCLUSIONS AND RECOMMENDATIONS	. 21

APPENDICES

Wardell Armstrong LLP Site Photographs
Wardell Armstrong LLP Trial Pit Logs
Wardell Armstrong LLP Windowless Sample Logs
Laboratory Geo-environmental Testing Results
Environmental Monitoring Data Sheet

DRAWINGS

TITLE	SCALE
Illustrative Layout Plan (Sheets 1 to	1 : 2,000 @ A1
5)	
Illustrative Project Drawings - Not	
for Approval (Doc Ref. 2.6)	
Ground Investigation Location Plan	1 : 2,500 @ A0
(ES Volume 3, Figure 11.1 (Doc Ref	
5.3))	

EXECUTIVE SUMMARY

The Site is located to the north and west of the village of Aldington, Kent (National Grid Reference ('NGR') TR 05898 37766) and is currently used as agricultural land and pastureland. The Project will include a generating station (incorporating solar arrays) with a total capacity exceeding 50 megawatts.

The ES Volume 4, Appendix 11.2: Phase 1 Geoenvironmental and Geotechnical Desk Study (Doc Ref. 5.4) produced in March 2022 to be included in the ES Volume 4, Appendix 1.1: EIA Scoping Report (Doc Ref. 5.4) recorded the Site to be at a very low to low risk of contamination noting that a change in proposed use for the Site would require re-assessment due to concerns of potential ground gas generation. Following the finalisation of the Project's Order limits and Works Plans, ES Volume 4, Appendix 11.2: Phase 1 Geoenvironmental and Geotechnical Desk Study (Doc Ref. 5.4) was updated in May 2024 and concluded a very low to low risk of contamination.

The Phase 1 identified several possible sources of contamination primarily associated with the Made Ground deposits related to the High Speed 1 (HS1)/Channel Tunnel Rail Link (CTRL) and the South Eastern Main Line (SEML) railway, farm and associated waste exemptions, and electrical infrastructure. As such, the ground investigation locations were designed to investigate these potential sources.

The ground conditions encountered generally comprised of natural superficial deposits of organic soil, clay, sand, and occasional deposits of gravel to a maximum recorded depth of 5.00 mbgl. No Made Ground was encountered across the Site. However, anthropogenic materials (fragments of brick, cement and ceramics) were encountered in some locations. As these materials were encountered sporadically in the ground and not in discernible bands/strata, this does not constitute definitive Made Ground strata and instead suggests that these materials existed at depth due to soil turnover activities such as ploughing.

Laboratory contamination testing was undertaken from selected samples taken from the trial pits and windowless sample boreholes. No solids exceeded their corresponding General Assessment Criteria (GACs) for solids for commercial land use and therefore the risk to human health is considered to be low. Given that the materials tested were first generation material with no definable Made Ground having been

encountered, the impermeable nature of the near surface deposits and the reservoir of contaminants being low, the overall risk to controlled waters is concluded to be low.

Following the intrusive ground investigation works, it was concluded that the overall risk to the Site and the proposed Project by contaminated land is considered Very Low to Low.

1 INTRODUCTION

1.1 Introduction

1.1.1 This Ground Investigation Report has been prepared on behalf of EPL 001 Limited ('the Applicant') to summarise the findings of the intrusive ground investigation works undertaken across the Site and support its suitability in relation to the Development Consent Order ('DCO') application for Stonestreet Green Solar ('the Project').

1.2 The Project

- 1.2.1 The Project comprises the construction, operation, maintenance, and decommissioning of solar photovoltaic ('PV') arrays and energy storage, together with associated infrastructure and an underground cable connection to the existing Sellindge Substation.
- 1.2.2 The Project will include a generating station (incorporating solar arrays) with a total capacity exceeding 50 megawatts ('MW'). The agreed grid connection for the Project will allow the export and import of up to 99.9 MW of electricity to the grid. The Project will connect to the existing National Grid Sellindge Substation via a new 132 kilovolt ('kV') substation constructed as part of the Project and cable connection under the Network Rail and High Speed 1 ('HS1') railway.
- 1.2.3 The location of the Project is shown on ES Volume 3, Figure 1.1: Site Location Plan (Doc Ref. 5.3). The Project will be located within the Order limits (the land shown on the Works Plans (Doc Ref. 2.3) within which the Project can be carried out). The Order limits plan is provided as ES Volume 3, Figure 1.2: Order Limits (Doc Ref. 5.3). Land within the Order limits is known as the 'Site'.

1.3 Instruction and Background

- 1.3.1 Wardell Armstrong ('WA') were commissioned on 5th July 2022 by the Applicant to undertake intrusive ground investigation works to confirm the presence of Made Ground beneath the Site and where present determine its extent and depth. Further the ground investigation works would assess the geo-environmental characteristics of the Made Ground and superficial deposits beneath the Site.
- 1.3.2 The intrusive ground investigation works were designed on the findings of the Phase 1 Geoenvironmental and Geotechnical Desk Study (including Site walkover survey) (ES Volume 4, Appendix 11.2 (Doc Ref. 5.4)) produced by

WA in March 2022 which has subsequently been updated and finalised in May 2024.

1.4 Scope and Objectives

- 1.4.1 In support of the proposed DCO application, the EIA Scoping Report (ES Volume 4, Appendix 1.1 (Doc Ref. 5.4)) was submitted to the Planning Inspectorate. This scoping report included an earlier version of ES Volume 4, Appendix 11.2: Phase 1 Geoenvironmental and Geotechnical Desk Study (Doc Ref. 5.4). Whilst the Planning Inspectorate agreed that contamination is unlikely to be significant, given there is potential for Made Ground on the Site, further assessment was required to confirm the risks were very low to low.
- 1.4.2 The purpose of the commissioned scope is to investigate the potential presence of Made Ground identified in the ES Volume 4, Appendix 11.2: Phase 1 Geoenvironmental and Geotechnical Desk Study (Doc Ref. 5.4) and provide a preliminary assessment of the likely ground conditions present across the Site including the Cable Route Corridor area. This report uses information provided within ES Volume 4, Appendix 11.2: Phase 1 Geoenvironmental and Geotechnical Desk Study (Doc Ref. 5.4) plus additional information collected as part of these intrusive investigations to provide information relating to the:
 - Past and current users of the Site and its surrounding area.
 - The environmental setting including geology, mining, hydrogeology, and hydrology.
 - The potential contamination sources, pathways, and receptors through the production of a preliminary conceptual model.
 - A provisional assessment of the contamination issues that need to be considered during the construction, operation and decommissioning of the Site.
- 1.4.3 This report does not consider broader development constraints such as services, geotechnics, land drainage, flood risk, ecology or invasive species.

1.5 Site Limitations

1.5.1 This report has been prepared for the exclusive benefit of the Applicant for the purpose of providing geo-environmental recommendations for the Site, with specific focus on establishing the potential risks associated with contaminated land. The report contents shall only be used in that context. Furthermore, new information, changes in practice or new legislation may necessitate revised

interpretation of the report after the date of its production.

- 1.5.2 The purpose of the ground investigation was to target the potential presence of contamination on Site (e.g. Made Ground) identified within the ES Volume 4, Appendix 11.2: Phase 1 Geoenvironmental and Geotechnical Desk Study (Doc Ref. 5.4) and Site walkover survey, rather than target features of the proposed Project. Geotechnical testing was limited to Standard Penetration Testing (SPTs) for the purposes of this investigation. SPT testing was undertaken to provide characteristic values for the in-situ density of the strata on Site.
- 1.5.3 The scope and locations of the ground investigation works were confirmed in January 2023. Site All ground investigations rely upon the determination of information from 'point sources' such as the windowless sample boreholes and trial pits and the interpretation of data between investigation points.
- 1.5.4 The actual conditions between investigation points may vary generally or seasonally, and impact upon the future development, and it is the responsibility of the developer to determine whether further ground investigation may be needed to support detailed design of the construction works.
- 1.5.5 The ground investigations were restricted in places due to the presence of services, archaeological potential, field boundaries and current land uses. Exploratory hole locations were positioned at locations to avoid these constraints or minimise disruption to the current land uses and were based on the information provided in the ES Volume 4, Appendix 11.2, Phase 1 Geoenvironmental and Geotechnical Desk Study (Doc Ref. 5.4). WA has carried out an appropriate level of checking third party supplied information, however WA cannot be held liable for any inaccuracies, inconsistencies or omissions in such information (should there be any).
- 1.5.6 WA has used reasonable skill and care in the design of the ground investigation work for the proposed Project area to comply with currently available industry guidance and to meet the requirements of the commission.

2 BASELINE CONDITIONS

- 2.1 Summary of WA Phase 1 Geoenvironmental and Geotechnical Desk Study (ES Volume 4, Appendix 11.2 (Doc Ref. 5.4)
- 2.1.1 A summary of the Site history, existing land use, geology, hydrogeology, hydrology and mining is contained within ES Volume 4, Appendix 11.2, Phase
 1 Geoenvironmental and Geotechnical Desk Study (Doc Ref. 5.4).
- 2.1.2 ES Volume 4, Appendix 11.2: Phase 1 Geoenvironmental and Geotechnical Desk Study (Doc Ref. 5.4) concluded the following:
 - There is the potential for Made Ground to exist beneath the Site at an unknown thickness and composition due to HS1/CTRL and SEML, farm and associated waste exemptions, and electrical infrastructure present across the Site;
 - There is a very low to low risk on Site associated with potential contamination;
 - That a ground investigation should be undertaken to assess the following:
 - Ascertain the characteristics of any Made Ground (targeted investigation locations shown in in Table 2.1); and
 - Reduce any existing uncertainties regarding the potential geoenvironmental suitability of the Made Ground and superficial deposits.

2.2 Justification of Ground Investigation Locations

2.2.1 The justification of each ground investigation location is detailed in the table below.

Table 2.1: Justification of ground investigation locations					
Location	Justification of position				
TP01	Non-targeted to provide a representative spread of investigation				
TP02	locations.				
TP03	Investigate the presence of a historic substation.				
TP04	Investigate ground conditions present along the grid connection.				
TP05	Investigate potential Made Ground associated with HS1/CTRL and SEML.				
WS01	Investigate the land around the Bank Farm waste exemption.				

Table 2.1:	Table 2.1: Justification of ground investigation locations				
Location	Justification of position				
WS02	Investigate Clap Hill historical landfill (situated immediately off-				
	site)				
WS03	Investigate the grid connection and potential Made Ground				
	associated with HS1/CTRL and SEML.				
WS04	Investigate the land around waste exemption reference:				
	WEX216477.				
WS05	Non-targeted to provide a representative spread of investigation				
WS06	locations.				
WS07	Non-targeted to provide a representative spread of investigation				
WS08	locations.				
WS09					
WS10	Investigate potential Made Ground associated with HS1/CTRL				
	and SEML.				
WS11	Non-targeted to provide a representative spread of investigation				
	locations.				

3 PHASE II GROUND INVESTIGATION WORKS

3.1 Ground Investigation Works

- 3.1.1 The ground investigation (GI) was designed to target areas of potential Made Ground identified in ES Volume 4, Appendix 11.2: Phase 1
 Geoenvironmental and Geotechnical Desk Study (Doc Ref. 5.4) and assess the general geo-environmental condition of the Site and identify the presence or absence of contamination and Made Ground on site.
- 3.1.2 The justification of the GI locations is detailed within Table 2.1 of this report. In summary 8 No. investigation locations were targeted, with two locations targeting the HS1/CTRL and SEML, and the remainder positioned across the Site (including the grid connection) to provide a representative data set to quantify the extent of any contamination encountered on Site.
- 3.1.3 Several constraints on Site limited the location that the ground investigations were able to be undertaken in, these include:
 - Current land use;
 - Services (including the presence of overhead power cables and electrical substation);
 - Field boundaries; and
 - Medium/High archaeological potential.
- 3.1.4 The GI locations are presented on WA Drawing Number GM12014-038. A series of Site photographs taken during the ground investigation works are presented in **Annex A**.
- 3.1.5 The GI was undertaken between 15 and 17 February 2023 under the full-time supervision of a WA Engineering Geologist. The GI works comprised of the following:
 - 5 No. Trial pits (TP) were excavated across the Site excavated to a maximum depth of 2.30 mbgl. TP02 was terminated at a shallower depth of 1.50 mbgl due to the intercept with the local limestone bedrock. The trial pit logs are attached as **Annex B**. The trial pits were undertaken in order to:
 - To investigate the nature, distribution and thickness of the nearsurface deposits; and
 - Obtain samples for laboratory chemical testing.

- 11 No. windowless sampler boreholes (WS) were drilled to a maximum depth of 5.00 mbgl and the borehole logs are attached at Annex C. The boreholes were drilled in order to:
 - Allow for the installation of gas and groundwater monitoring boreholes with one follow up round of monitoring; and
 - Allow in-situ Standard Penetration Testing to be carried out.
- In total, 32no. solid soil samples were subject to laboratory chemical analysis. The following suite of laboratory chemical testing was undertaken:
 - Heavy Metals (Arsenic, Boron, Cadmium, Copper, Chromium III, Chromium VI, Lead, Mercury, Nickel, Selenium, and Zinc);
 - Total Organic Carbon (TOC);
 - Soil Organic Matter (SOM);
 - Water Soluble Sulphate;
 - pH;
 - USEPA 16 Polycyclic Aromatic Hydrocarbons (PAH's);
 - Total Petroleum Hydrocarbons (TPH's) (TPH total >C6-C40); and
 - o Asbestos ID.
- A summary of the laboratory geo-environmental testing results is attached at **Annex D**.
- A subsequent environmental monitoring round was undertaken on 6th April 2023, with the results attached in Annex E.

4 RESULTS OF PHASE II GROUND INVESTIGATION

4.1 Ground Conditions

4.1.1 The results of the GI have broadly confirmed the conjectured geological setting of the Site with the general sequence of strata being topsoil overlying natural superficial deposits of organic soil, clay, sand, and occasional deposits of gravel. A summary of the ground conditions encountered during the GI works are presented below. The trial pit and borehole engineer's logs are presented in **Annex B** and **Annex C** respectively.

4.2 Made Ground

- 4.2.1 Anthropogenic materials such as brick, cement and ceramics were recorded in TP01, TP02, TP05, WS02, WS04, WS05 and WS08 to a maximum depth of 0.80 mbgl across the site.
- 4.2.2 As the materials were encountered sporadically in the ground and not in discernible bands/strata, this does not constitute definitive Made Ground strata and instead suggests that these materials existed at depth due to soil turnover activities such as ploughing.

4.3 Natural Superficial Deposits

4.3.1 Natural superficial deposits were encountered in all trial pits and windowless sampler boreholes across the Site and proven to a maximum recorded depth of 5.00 mbgl. A summary of the distribution of the natural superficial deposits is detailed in Table 4.1.

Table 4.	Table 4.1: Distribution of natural superficial deposits across the site					
Strata	Descriptions	Depth Range	Thickness Range			
Ollata	Descriptions	(mbgl)	(m)			
Topsoil	(Soft) brown slightly silty slightly sandy CLAY with rootlets throughout and occasional gravel. Sand is fine. Occasional gravel; angular to subangular fine to medium of brick, pottery, and mixed natural lithologies.	0.00 – 0.15	0.10 – 0.15			
Organic Soil	(Soft) brown slightly silty slightly sandy CLAY with occasional gravel and rare rootlets. Sand is fine. Occasional gravel; subangular to subrounded fine to medium of mixed natural lithologies.	0.10 – 0.45	0.20 – 0.35			

Table 4.	Table 4.1: Distribution of natural superficial deposits across the site						
Strata	Descriptions	Depth Range (mbgl)	Thickness Range (m)				
Sand	Loose to very dense light brownish yellow slightly silty slightly clayey slightly gravelly (to gravelly) fine to medium SAND. Gravel is angular to subrounded fine to medium of mixed natural lithologies. (Loose) light brownish grey with occasional orange mottle slightly clayey fine to medium SAND.	0.30 – 3.70	0.40 – 2.60				
Gravel	Loose light yellowish brown silty GRAVEL. Gravel is subangular to subrounded fine to medium of mixed natural lithologies.	2.00 – 2.70	0.70				
Clay Soft to firm greyish yellow slightly silty slightly sandy CLAY. Sand is fine to medium. Firm to stiff grey with orange mottle slightly silty slightly sandy (rare gravel to gravelly) CLAY. Sand is fine to medium. Gravel is subangular to subrounded fine of mixed natural lithologies. Stiff blueish grey CLAY.		0.45 – 5.00	0.10 – 3.40				

4.4 Solid Geology

4.4.1 Rockhead was only encountered in one position during the GI, TP02, at 1.50 mbgl. However, several trial pits were terminated due to hard digging (possible rockhead). Where encountered, solid geology was recorded as "(Medium strong) light grey sandy partially weathered LIMESTONE with rare fragmented fossil content (> 1.00 cm)".

4.5 In-situ Geotechnical Testing

Standard Penetration Tests (SPTs)

- 4.5.1 SPTs were carried out in all WS boreholes. Uncorrected SPT "N Values" range from 2 to refusal. Two SPT refusals were recorded in the following locations:
 - WS01 at 3.00 mbgl; and
 - WS05 at 4.00 mbgl.
- 4.5.2 A summary of the SPT results is provided in Table 4.2 below alongside an inferred descriptive strength value for the strata based on Tables 8, 9 and 10 contained within BS5930:2015+A1:2020.

Table 4.2	Table 4.2: Summary of SPT results					
	N V	alue	Inferred Descriptive Strength			
Material	Range	Average	(BS 5930:2015+A1:2020 – Tables 8, 9			
			and 10)			
Sand	8 - 16 11		Medium dense			
Gravel 10 10		10	Loose			
Clay	4 - 26 13		Stiff			

Gas & Groundwater Monitoring

4.5.3 Gas and groundwater monitoring apparatus was installed within WS01, WS05, WS06, WS07, WS09 and WS10.

Groundwater Monitoring

4.5.4 Groundwater was recorded during excavation with the slow ingress of water summarised at the following locations in Table 4.3.

Table 4.3: Summary of groundwater recordings during the groundinvestigation							
Location	Location Depth to Groundwater Speed of ingress						
	(mbgl)						
TP01	1.15	Slow					
TP05	1.45	Slow					
WS03	2.70	Slow					
WS04	2.30	Slow					

Ground Gas and Groundwater Monitoring

- 4.5.5 Following the ground investigation works, 1no. round of ground gas monitoring (6th April 2023) has been undertaken. Ground gas monitoring results are attached at **Annex E**. A summary of ground gas results is displayed within Table 4.4.
- 4.5.6 The environmental monitoring only recorded a measurable methane concentration within monitoring borehole WS07 of 0.10% v/v, and a positive peak gas flow in WS06 of 15.6 l/hour, it should be noted that this peak flow dropped to lower than detection steady flow rate. However, 3no. monitoring boreholes (WS01, WS07, and WS09) returned carbon dioxide concentration of greater than 1% v/v.

Table 4.4: Summary of gas monitoring data.

Location	Max CH₄ (%)	Max CO ₂ (%)	Max Flow Rate (I/hr)
WS01	-0.10*	6.20	0.00
WS05	-0.10*	0.70	0.00
WS06	0.00	0.80	15.60
WS07	0.10	1.50	0.00
WS09	-0.10*	1.60	0.00
WS10	0.00	0.20	0.00

5 GEOTECHNICAL SUMMARY

5.1 General

5.1.1 The assessment of geotechnical data collected during this GI in respect to foundations for the Project was beyond the scope of the commissioned ground investigation works. Once the final designs have been approved, specialist foundation designers should be consulted, and designs prepared accordingly.

5.2 Excavation and Dewatering

5.2.1 Throughout the GI, groundwater was only recorded as slow ingress in four of the 16 positions as detailed in Table 4.3. Groundwater was recorded during the intrusive works and environmental monitoring round from 0.36 mbgl (WS10 during monitoring) to 2.70 mbgl (WS03 during intrusive works). Therefore, it is likely that during the excavation of any construction trenches or pits that some de-watering precautions may be required.

5.3 Stability

5.3.1 All trial pits were recorded as stable throughout the works. Minor collapse of WS03 between 2.00 mbgl and 2.70 mbgl was recorded which resulted in limited advance of the WS borehole to the intended depth of 5.00 mbgl. Therefore, it is unlikely that temporary works trench support and/or benching of excavations will be required during the planning, design and construction phases of the Project.

5.4 Buildings and Infrastructure

- 5.4.1 Sulphates and acids within the ground can be destructive to concrete and result in expansion and/or softening. The laboratory chemical analysis along with the soil type and water levels have been used to assess the potential for chemical attack on buried concrete to be used in new structures on the Site.
- 5.4.2 The current method in use to determine the correct classification of a Sulphate resistant concrete to control this risk of attack is detailed in the BRE Special Digest 1:2005 3rd Edition Concrete in Aggressive Ground guidance¹.
- 5.4.3 The rate of chemical attack depends upon the concentration of aggressive ions and their replenishment rate. The replenishment rate is dependent upon water levels and the permeability of the ground.
- 5.4.4 The sampling and testing of the soil recorded the following:
 - The soil pH level across the Site ranges from pH 5.06 to pH 8.45

(average pH 7.77); and

- Water soluble sulphate levels range from 0.01 g/l to 0.21 g/l (average 0.06 g/l).
- 5.4.5 Based upon the use of the methodology set out in BRE Special Digest 1:2005 3rd Edition Concrete in Aggressive Ground¹, the Design Sulphate class for this Site is DS-1 and the Aggressive Chemical Environment for Concrete (ACEC) classification for the Site is AC-1s. However, it should be noted that further consideration should be made during the detailed construction design stage.

5.5 Services

5.5.1 Excavations required for services should take into consideration the ground conditions on the Site. Potential obstructions not encountered in the GI may still be present and should be considered in construction risk assessments.

6 CONTAMINATION ASSESSMENT

6.1 Introduction

- 6.1.1 A primary purpose of the ground investigation was to provide an assessment of the significance of any ground contamination that may be encountered during the development of the Site.
- 6.1.2 In the UK, contaminated land is regulated by the planning and development control system and the contaminated land regime set out in Part 2A of the Environmental Protection Act (EPA) 1990².
- 6.1.3 Environment Agency guidance 'Land Contamination Risk Assessment (LCRM)³' provides advice on the approach for the investigation and assessment of contamination on a site. This approach includes the production of a conceptual site model depicting the environmental processes that occur on and in the vicinity of the site and identifying the potential pollution linkages. The assessment of the significance of these pollution linkages can then be carried out through the risk assessment process.

6.2 Human Health

Initial Screening Criteria

- 6.2.1 Laboratory chemical analysis has been undertaken on samples of soil taken from across the Site. The significance of the recorded concentrations has been determined through a comparison with generic assessment criteria (GACs) published by Land Quality Management & Chartered Institute of Environmental Health⁴, and Department for Environment Food and Rural Affairs⁵. Based on the lack of Made Ground encountered on the Site, the testing suite described in Section 3.1.5 has been used to provide a general screening of potential contaminants on Site.
- 6.2.2 GACs are derived based on generic conceptual site models for a number of land-uses and making generic assumptions about receptor type and behaviour and building and soil properties.
- 6.2.3 The land uses included under the GAC include residential development, with and without the consumption of homegrown vegetables, allotments, commercial and industrial, open space and parks and playing fields. The assessment for this development i.e., construction of a solar farm, infrastructure and associated switch & storage rooms, will therefore be undertaken using the values for "Commercial" land use. It is also assumed that the future Site users

will be involved only in the maintenance and operation and decommissioning of the Site, and there will be no full-time occupation of any Site buildings.

6.2.4 There is no one source that publishes values for all contaminants and so the following sources have been used in the following order of preference. Results that are reported lower than the limit of detection have been discounted.

Category 4 Screening Levels (C4SL)

6.2.5 In March 2014, the Department for Environment, Food and Rural Affairs (DEFRA) published six Category 4 Screening Levels within their report "Development of Category 2 Screening Levels for Assessment of Land Affected by Contamination". These GACs are generated using the CLEA model, although the toxicology and exposure parameters have been modified so that the values represent "*a more pragmatic approach to contaminated land risk assessment (albeit still strongly precautionary)*". DEFRA state that the Category 4 Screening Levels will be used as generic screening criteria.

Suitable For Use Levels (S4UL)

- 6.2.6 Land Quality Management (LQM) and Chartered Institute of Environmental Health (CIEH) have published Suitable For Use Levels (S4UL's) for 82 substances. These values, contained within the publications "LQM/CIEH S4Uls for Human Health Risk Assessment" (2015), replace the previous values contained within "Generic Assessment Criteria for Human Health Risk Assessment (2nd Edition)" dated 2009, and reflect the greater knowledge of relevant toxicology and further consideration of exposure scenarios.
- 6.2.7 Separate S4UL values have been published for three soil organic matter (SOM) contents (i.e. 1%, 2.5% and 6%). The SOM across the Site ranged from 0.1% to 3.9%. Due to the variable nature of the SOM a value of 1% has been chosen for the initial screen as it is the most conservative approach.

6.3 Laboratory Chemical Analysis

- 6.3.1 The comparison of the results of the solid laboratory chemical testing with the GACs discussed above showed no exceedances against the relevant screening criteria.
- 6.3.2 The GI was designed to characterise the geo-environmental condition of the Site and target areas of potential Made Ground associated with the HS1/CTRL and SEML, farm and associated waste exemptions, and electrical infrastructure present across the Site.

Asbestos

- 6.3.3 During the GI works, no asbestos or asbestos containing material (ACMs) were recorded.
- 6.3.4 Asbestos identification analysis was undertaken on 32no. samples taken from across the Site and asbestos was not detected within any of these samples, therefore the risk from asbestos is considered to be low.
- 6.3.5 Should potential ACMs be encountered during either any enabling works or construction works, works should stop, this material should be isolated, sampled and analysed for asbestos and the risk assessment for asbestos should be updated accordingly.

6.4 Controlled Waters Risk Assessment

- 6.4.1 The GI has proven the near surface deposits are relatively low permeability in nature (clay) which consequently reduces the hydraulic conductivity of contaminants and therefore unlikely to support the infiltration and migration of groundwater. In addition, the results of the solid analysis concluded that there were no exceedances of GACs for commercial land use and this indicates that the reservoir of contaminants present beneath the Site is low.
- 6.4.2 Given that the materials tested were first generation material with no definable Made Ground having been encountered, the low permeability nature of the near surface deposits and the reservoir of contaminants being low, the overall risk to controlled waters is concluded to be low.
- 6.4.3 It is recommended that the main area of focus for the protection of controlled waters receptors is through ensuring environmental best practice throughout the lifespan of the Project but primarily during earthworks associated with construction and decommissioning phase works. The use of environmental best practice (e.g control of run off, stockpiling etc.) is detailed in the **Outline CEMP** and **Outline DEMP (Doc Ref. 7.8 and Doc Ref. 7.12)**.

6.5 Ground Gas and Groundwater Monitoring

- 6.5.1 Using CIRIA C665⁶ and the gas monitoring results recorded from WS06 (as a worst-case scenario for the Site) an overall gas screening value (GSV) of 0.12 l/hr for carbon dioxide has been used to undertake an indicative ground gas risk assessment, as shown in Table 6.1.
- 6.5.2 Based upon the measured concentrations of dioxide in monitoring borehole WS06 and the derived GSV, a worst-case classification for the Site is Gas CS

2 (CIRIA C665), using the Modified Wilson and Card classification. However, it should be noted that due to the recorded CO_2 concentrations of >1% v/v that boreholes WS01, WS07 and WS09 are also provisionally considered to be Gas CS 2. The monitoring results recorded for the remaining 2no. monitoring boreholes indicate Gas CS 1.

Table 6.1:	Table 6.1: Summary of Gas Monitoring Data							
		Max	Мах	GSV (l/hr)			Water	
Location		CH₄	CO ₂	Flow			CS	Level
	(%)	(%)	Rate	CH₄	CO ₂	CH ₄ CO ₂ Number	Number	(mbgl)
			(l/hr)					
WS01	-0.10*	6.20	0.00	0	0	2	1.80	
WS05	-0.10*	0.70	0.00	0	0	1	0.72	
WS06	0.00	0.80	15.60	0	0.12	2	0.82	
WS07	0.10	1.50	0.00	0	0	2	1.03	
WS09	-0.10*	1.60	0.00	0	0	2	0.88	
WS10	0.00	0.20	0.00	0	0	1	0.36	
* -0.10 % v/v gas concentrations recorded by monitoring equipment								
considered 0% v/v for GSV calculations.								

- 6.5.3 The records of the environmental monitoring visit undertaken on 6th April 2023 indicate that the majority of the Site would provisionally be classified as Gas Characteristic Situation (CS) 2, as per CIRIA C665. This is due to elevated carbon dioxide concentrations of > 1% v/v (WS01, WS07 and WS09) or gas screening value of greater than 0.07l/hour (WS06). The remaining two monitoring boreholes (WS05 and WS10) were classified as Gas CS1.
- 6.5.4 The Project Substation, and Intermediate Substations, are situated in Field 26. This is where WS10 and the Gas CS 1 area is located, indicating that any proposed enclosed spaces across the area are unlikely to require ground gas protection measures.
- 6.5.5 The development proposed across the areas classified as Gas CS 2 comprise the PV Arrays, Inverter Stations (including BESS), Intermediate Substations, Project Substation and Sellindge Substation Extension.
- 6.5.6 As the PV Arrays are in the open-air with no confined areas for the potential accumulation of gases, this therefore removes the pathway for ground gas migration and accumulation.

- 6.5.7 All other infrastructure (e.g. Inverter Stations, Intermediate Substations, Project Substation and Sellindge Substation Extension) will be sited on concrete or skid foundations which will help to break the pollutant pathway between ground and containers.
- 6.5.8 It is understood that any works during the operational phase involving containerised Inverters will be undertaken outside of the units in the open air therefore removing the potential for inhalation pathway by human health receptors.
- 6.5.9 The BESS, the Intermediate Substations and the Project Substation buildings will have active and/or passive ventilation systems installed thereby removing the potential for ground gas accumulation.
- 6.5.10 Additionally, the Project Substation buildings are expected to be raised to allow cable infrastructure to enter from beneath. The void space between the foundations and the Project Substation building will allow for dispersion and prevent potential accumulation of any ground gases.
- 6.5.11 It is considered unlikely that the proposed buildings located across the areas provisionally designated as Gas CS2 would require any additional ground gas protection measures.

6.6 Ecological Receptors

6.6.1 The results of the solid laboratory chemical testing indicate that the preliminary risk assessment of Very Low to Low for ecological receptors (local fauna and flora) presented in the ES Volume 4, Appendix 11.2: Phase 1 Geoenvironmental and Geotechnical Desk Study (Doc Ref. 5.4) has been downgraded to Very Low.

7 CONCLUSIONS AND RECOMMENDATIONS

7.1 Summary

7.1.1 Ground contamination, as identified within ES Volume 4, Appendix 11.2: Phase 1 Geoenvironmental and Geotechnical Desk Study (Doc Ref. 5.4) and investigated by GI, is unlikely to preclude the proposed Project on the Site. The key conclusions and recommendations relating to the development of the Site are summarised below.

7.2 Contamination Assessment

- 7.2.1 Following laboratory contamination testing, it was shown that no solids exceeded their corresponding GACs for solids for commercial land use and therefore the risk to human health is considered to be low. Therefore, it is considered that risk management actions are not necessary in order to mitigate against the risks posed to human health.
- 7.2.2 The reservoir of contaminants present beneath the Site has been proven to be low. Therefore, the overall risk to controlled waters is concluded to be low.
- 7.2.3 During the works, 32 No. samples were tested from across the Site for asbestos. Following analysis, none of the samples obtained were recorded to contain asbestos. Therefore, it is considered that the overall risk of asbestos is considered low.
- 7.2.4 Some anthropogenic materials such as brick, cement and ceramics were recorded in TP01, TP02, TP05, WS02, WS04, WS05 and WS08 to a maximum depth of 0.80 mbgl across the Site. As these materials were encountered sporadically and not in discernible bands/strata, it was concluded that this did not constitute definitive Made Ground and instead these materials existed at depth due to soil turnover activities such as ploughing.
- 7.2.5 The records of the environmental monitoring visit undertaken on 6th April 2023 indicate that the majority of the Site would provisionally be classified as Gas CS 2, as per CIRIA C665, due to elevated carbon dioxide concentrations of greater 1% v/v (WS01, WS07 and WS09) or gas screening value of greater than 0.07l/hour (WS06). The remaining 2no. monitoring boreholes (WS05 and WS10) were classified as Gas CS 1. It is understood that the substation and associated infrastructure of the roposed Project are to be situated in Field 26, where WS10 is located a Gas CS 1 area, indicating that any enclosed spaces in the area are unlikely to require ground gas protection measures. Furthermore, given the development proposed across the areas designated as

Gas CS 2, it is considered unlikely that ground gas protection measures will be necessary. It may be considered prudent to consider the use of respiratory protection equipment if any confined space working is undertaken during construction.

7.3 Additional Comments

7.3.1 The GI represents a broad-based assessment of the Site. As such and whilst considered to be unlikely, there may be matters relating to the Site that have not been identified by the researches or the intrusive investigation work carried out to date, which might affect the future development of the Site. Regardless of this, if any such matters do come to light, then they will need to be investigated and dealt with by seeking appropriate professional advice.

References

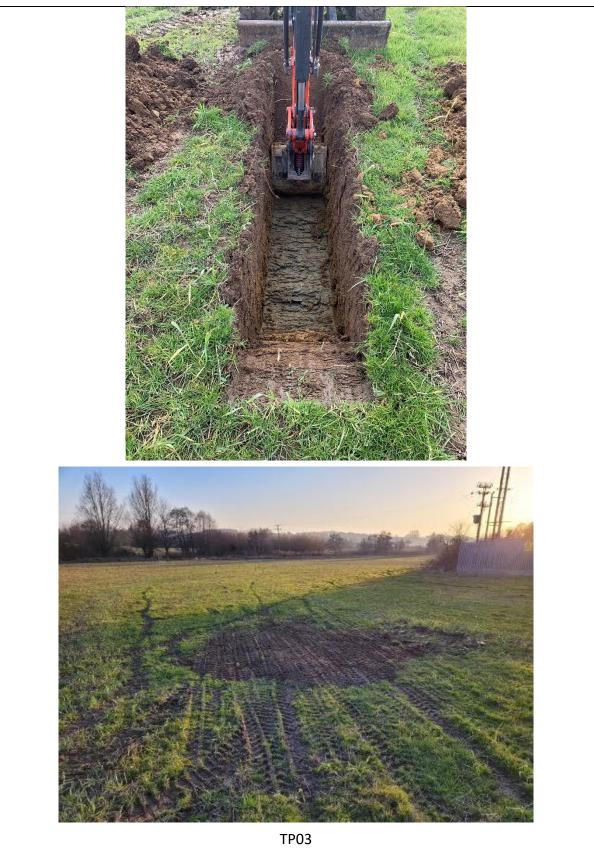
- ¹ British Research Establishment (2005). Special Digest 1: Concrete in aggressive ground. *Accessed May 2023*.
- ² HM Government (1990). Environmental Protection Act (EPA) 1990. *Accessed May* 2023. Available at https://www.legislation.gov.uk/ukpga/1990/43
- ³ Environment Agency (2020). Land Contamination Risk Management. *Accessed May 2023*. Available at: https://www.gov.uk/government/publications/land-contamination-risk-management-lcrm.
- ⁴ Land Quality Management Ltd, Chartered Institute of Environmental Health (2015). *The LQM/CIEH S4UL's for Human Health Risk Assessment*. Copyright Land Quality Management Limited and reproduced with permission under Publication Number S4UL3056. ISBN 978-0-9931084-0-2. *Accessed May 2023*.
- ⁵ Department for Environment Food and Rural Affairs (2014). Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination. *Accessed May 2023*. Available at: https://randd.defra.gov.uk/ProjectDetails?ProjectID=18341
- ⁶ CIRIA (2007). C665 Assessing risks posed by hazardous ground gases to buildings. *Accessed May 2023.*

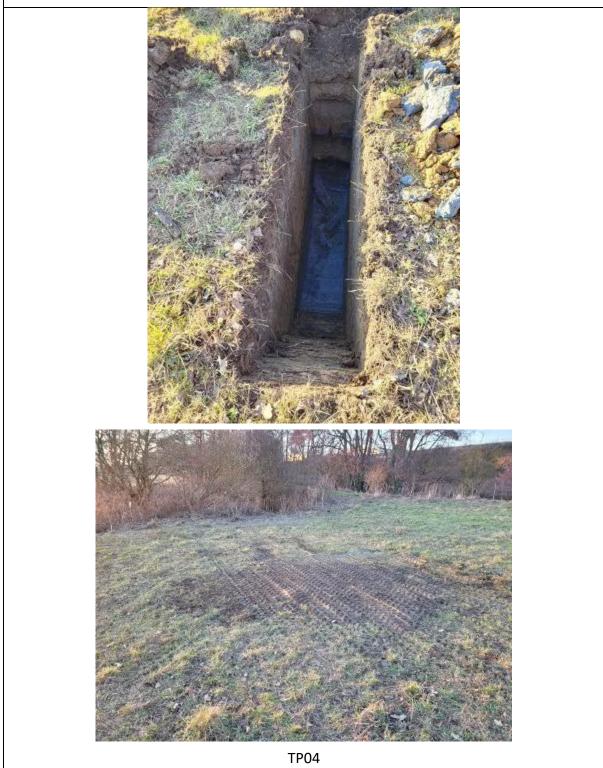
Annex A

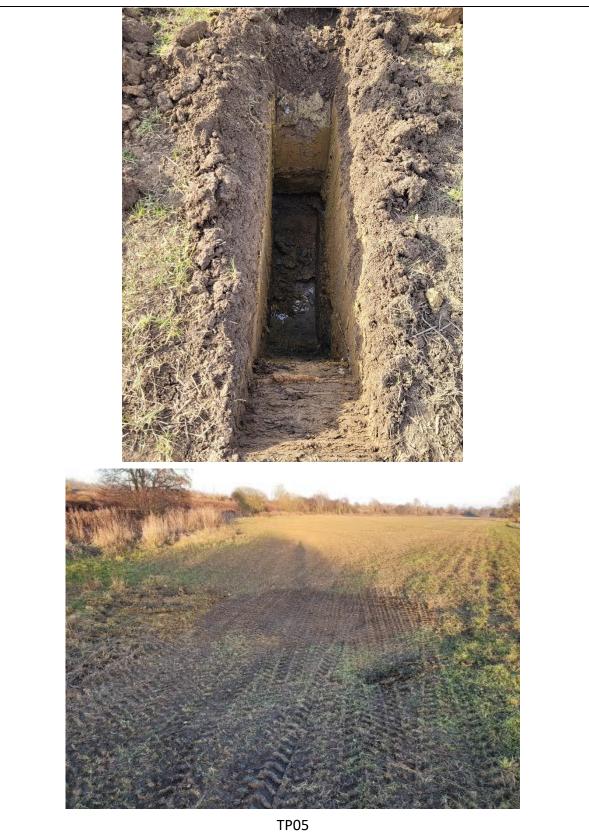
Wardell Armstrong LLP Site Photographs

CLIENT:	EPL 001 Limited		
PROJECT: Stonestreet Green			
SITE VISIT: Preliminary Ground Investigation			
SITE VISIT DATE:	15-17/02/23		
JOB NO.: GM12014			
PREPARED BY:	James Entwistle		
CAMERA USED:	Phone camera with a 35mm Focal Lense		

Photo Locations are shown ES Figure 11.1 Ground Investigation Location Plan (ES Volume 3, Figure 11.1 (Doc Ref 5.3)) which should be read in conjunction with this Photograph Survey.







GM12014/Photograph Survey 15-17/02/2023

Photo Location 10

GM12014/Photograph Survey 15-17/02/2023

Photo Location 11

WS06

Photograph Survey

Annex B

Wardell Armstrong LLP Trial Pit Logs

ect Name	: Stonestreet	Green S	Solar	Client: EPL 00	1			Date: 15/02/202	23			
tion: As s Ref 5.3)	hown on ES	Volume	3: 11.1	Contractor: SI	Ground Ir	nvestigatio	n Limited	Co-ords: E6063	370.00 N	N137633	8.00	
-	GM12014			Crew Name: D	М			Equipment: Kut	oota 3T	Excavat	or	
cation N			on Type	Level	- D		ed By	Scale			ge Numbe	
TP0 ² Water			P Situ Testing	46.40m A			IE	1:20		Sr	neet 1 of 2	
Strikes	Depth (m)	Туре	Results	Depth (m)	Level (m)	Legend		Stratum De	scriptio	n		
	0.30	ES		0.10	46.40		rootlets thr angular to mixed natu (Soft) brow rootlets.	s topped brown slig oughout and occas subangular fine to <i>iral lithologies.</i> (TO <i>i</i> n slightly silty CLA n) greyish yellow s id is fine to medium	sional gra medium PSOIL) Y with or lightly sil	avel. Grav of brick a ccasional	vel is ind	
	2.00	ES		1.50	46.00		(Firm) blue	aish grey CLAY.	ble.			
				2.30	44.90	 		End of Borehold	hole at 2.300m			
Dim it Length 2.50	Dimensions ength Pit Width Pit Stability 50 0.45 Minor collapse of sandy CLAY at 1.4m.		nor collapse of	Trenc Shoring Used	h Support	and Comme	ent Remarks		Date	Pumpir Rate	ng Data Rema	

wardell armstrong			Tr	rial F	Pit Lo	bg		
Project Name: Stonestreet	Green Solar	Client: EPL 001				Date: 15/02/2023		
Location: As shown on ES (Doc Ref 5.3)	Volume 3: 11.1	Contractor: SI	Ground Ir	nvestigatio	n Limited	Co-ords: E605201.00 N	137573.00	
Project No. : GM12014		Crew Name: DI	М			Equipment: Kubota 3T	Excavator	
Location Number TP02	Location Type TP	Level 63.30m Ad	D		led By IE	Scale 1:20	Page Numb Sheet 1 of	
Water Sample	and In Situ Testi	- I	Level					
Well Strikes Depth (m)	Type Resul	(1992)	(m)	Legend		Stratum Description		
0.30	ES	0.10 0.20	63.30 63.20		CLAÝ with subrounde (TOPSOIL) (Soft) brow is subangu natural litho (Loose to r slightly cob limestone t coarse of li	n slightly silty slightly grave lar to subrounded fine of br	is subangular to itural lithologies. Ily CLAY. Gravel ick and mixed ightly silty SAND with rare ded fine to	
1.00	ES							1
		1.50	63.10		Bedrock - I	Hythe Formation (Limestone End of Borehole at 1.500	e)/ Im	
Dimensions Pit Length Pit Width 3.00 0.45 Remarks	Pit Stability Trial pit stable throughout.	Trencl Shoring Used	ז Support	and Commo	ent Remarks	Date	Pumping Data Rate Rema	

-			eet Green		Client: EPL 001				Date: 15/02/2023	3		
	ion: As s Ref 5.3)	hown on E	ES Volume	93: 11.1	Contractor: SI	Ground Ir	nvestigatio	n Limited	Co-ords: E60661	3.00 N1382	06.00	
	,	GM12014			Crew Name: D	М			Equipment: Kubo	ota 3T Excav	vator	
Lo	cation Nu TP03			on Type FP	Level 49.80m Ad	D		jed By JE	Scale 1:20		Page Numbe Sheet 1 of 1	
Well	Water Strikes		le and In	Situ Testing Results	Depth	Level (m)	Legend		Stratum Dese	ľ		
		0.30 1.00	n) Type ES ES	Results	0.10 0.80 2.20	49.80 49.70 49.00		CLAY with (TOPSOIL) (Soft to firm with occasi <i>Rootlets prese</i>	n) yellowish brown s onal rootlets. Sand i nt. f) blueish grey sligh	Sand is fine. ilty slightly sar s fine. tly silty CLAY.	ndy CLAY	1
	Dime	ensions			Trend	Support	and Commo	ent		Pum	ping Data	4
Pit	Length 2.90	Pit W	idth	Pit Stability Trial pit stable	Shoring Used			Remarks		Date Rate		ks

SERVICES: Area checked using C.A.T 4 and Genny prior to excavation. GROUNDWATER: Not recorded. TESTING: Environmental samples obtained at 0.30m and 1.00m depth. BACKFILL: Trial pit backfilled with arisings. TERMINATION: Trial pit terminated due to maximum reach of the excavator.

-			eet Green		Client: EPL 001				Date: 15/02/2023		
	on: As s Ref <u>5.3)</u>	hown on	ES Volume	e 3: 11.1	Contractor: SI	Ground Ir	nvestigatio	on Limited	Co-ords: E608520.	00 N13802	7.00
	-	GM12014			Crew Name: D	М			Equipment: Kubota	3T Excava	tor
Loc	cation Nເ TP04			ion Type TP	Level 50.90m Ad	-D		ged By JE	Scale 1:20		ge Number heet 1 of 1
	Water			Situ Testing	L	Level				I	
Vell	Strikes	Depth (m) Type	Results	, · 、	(m)	Legend	(0.6)	Stratum Descri		
		0.30	ES		0.10	50.90		occasional (Soft to firm	s topped brown slightly rootlets and rare fine s n) brown with orange n rare fine sand.	and. (TOPS)	DIL)
		0.00			0.40	50.80		(Medium d fine to med	ense) pale yellowish bi lium SAND.	rown slightly o	clayey
		1.00	ES								
					1.15	50.50		(Stiff) dark	blueish grey CLAY.		
					2.30	49.75			End of Borehole at 2	2.300m	
	Length 2.30	ensions Pit W		Pit Stability Trial pit stable	Irencl Shoring Used	1 Support	and Comm	ent Remarks	Da	ate Rate	ng Data Remarks

SERVICES: Area checked using C.A.T 4 and Genny prior to excavation. GROUNDWATER: Not recorded. TESTING: Environmental samples obtained at 0.30m and 1.00m depth. BACKFILL: Trial pit backfilled with arisings. TERMINATION: Trial pit terminated due to maximum reach of the excavator.

-		Stonestreet			Client: EPL 001	1			Date: 15/02/2023		
	ion: As s Ref 5.3)	hown on ES	Volume	3: 11.1	Contractor: SI	Ground I	nvestigatio	n Limited	Co-ords: E606916.00	N138223.00	
		GM12014		C	Crew Name: D	М			Equipment: Kubota 3	T Excavator	
Lo	cation N		Locatio T		Level 47.20m A	-D		led By	Scale	Page Numbe Sheet 1 of 2	
	TP05 Water			P Situ Testing	Depth	Level		JE	1:20		$\frac{1}{1}$
Vell	Strikes	Depth (m)	Туре	Results	(m)	(m)	Legend		Stratum Descripti		
		0.30	ES		0.10	47.20 47.10 46.70 45.60		CLAY with subrounde <u>natural lith</u> (Soft) brow occasional subrounde natural lith (Firm) pale Sand is fin Becoming sligi of mixed natural	e yellow slightly silty slight e to medium. htly gravelly: subangular to sui	els are angular to flint and mixed velly CLAY with ular to flint and mixed ly sandy CLAY.	1
											4
Pit	Dime Length	ensions Pit Width		it Stability	Trencl Shoring Used	n Support	and Commo	ent Remarks	Date	Pumping Data Rate Rema	arks
	3.00	0.45	Т	rial pit stable throughout.				. tomanto			

0.30m and 1.00m depth. BACKFILL: Trial pit backfilled with arisings. TERMINATION: Trial pit terminated due to maximum reach of the excavator.

Annex C

Wardell Armstrong LLP Windowless Sample Logs

boc Ref 5.3) Dject No. : GM120 Borehole Number WS01 ell Water S Strikes Depti 0.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1		Crew Name Crew Name 71.00 ting Ults /2,2,2,3) 3/3,4,4,5) 58		Legend (Soft) (CLAY. (Soft) I Firm lig sandy Lerse (Mediur occasi mediur	Co-ords: E605428.00 N Drilling Equipment: Dar Windowless Sample Ri Scale 1:51 Stratum Descripti grass topped brown slightly Sand is fine. (TOPSOIL) brown slightly silty sandy CL hout. Sand is fine to mediu of fine to medium sand. m dense light brownish yello onal orange mottle slightly s m SAND.	rt Competitor ig Page Number Sheet 1 of 1 ion silty sandy .AY with rootlets silty slightly
apject No. : GM120 Borehole Number WS01 ell Water Strikes Depti 0.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	Index Hole Type WLS Sample and In Situ Testi Depth (m) 0.30 ES 1.00 SPT 1.20 SPT 2.00 SPT N=16 (3,3) 3.00 SPT	Le 71.00 ults /2,2,2,3) 3/3,4,4,5)	vel m AoD Depth (m) 20.90 0.20 70.80 1.10 69.90	JE Legend CLAY. CL	Windowless Sample Ri Scale 1:51 Stratum Descripti grass topped brown slightly Sand is fine. (TOPSOIL) brown slightly silty sandy CL hout. Sand is fine. ght yellowish brown slightly CLAY. Sand is fine to medium of fine to medium sand. m dense light brownish yello onal orange mottle slightly s m SAND.	ig Page Number Sheet 1 of 1 ion silty sandy .AY with rootlets silty slightly
WS01 Water S Strikes Depti 0.1 1.1 1.1 2.1 3.1 4.1	WLS WLS Sample and In Situ Testi Depth (m) Type Result 0.30 ES	71.001 ting D ults ////////////////////////////////////	m AoD Depth (m) Level (m) 0.10 70.90 0.20 70.80 1.10 69.90	JE Legend CLAY. CL	Scale 1:51 Stratum Descripti grass topped brown slightly Sand is fine. (TOPSOIL) brown slightly silty sandy CL hout. Sand is fine. ght yellowish brown slightly CLAY. Sand is fine to mediu of fine to medium sand. m dense light brownish yello onal orange mottle slightly s m SAND.	Page Number Sheet 1 of 1 ion silty sandy _AY with rootlets silty slightly um. ow with silty clayey fine to
Water Strikes S 0.1 0.1 1.1 1.1 1.1 1.1 2.1 3.1 4.1 4.1	Sample and In Situ Testi Depth (m) Type Result 0.30 ES	ting D ults //2,2,2,3) 3/3,4,4,5) 58	Depth Level (m) 70.90 0.20 70.80 1.10 69.90	Legend (Soft) (CLAY. (Soft) (CLAY. (Soft) ((Soft) (Sandy Lense (Mediur occasis mediur	Stratum Descripti grass topped brown slightly Sand is fine. (TOPSOIL) brown slightly silty sandy CL hout. Sand is fine. ght yellowish brown slightly CLAY. Sand is fine to mediu of fine to medium sand. m dense light brownish yello onal orange mottle slightly s m SAND.	ion silty sandy _AY with rootlets silty slightly um. pw with silty clayey fine to
Strikes Dept 0.1 0.1 1.1 1.1 1.1 </td <td>Depth (m) Type Result 0.30 ES </td> <td><u>ults</u> /2,2,2,3) 3/3,4,4,5) 58</td> <td>(m) (m) 0.10 70.90 0.20 70.80 1.10 69.90</td> <td>Legend (Soft) (CLAY. (Soft) I Firm lig sandy Lerse (Mediur occasi mediur</td> <td>grass topped brown slightly Sand is fine. (TOPSOIL) brown slightly silty sandy CL hout. Sand is fine. ght yellowish brown slightly CLAY. Sand is fine to mediu of fine to medium sand. m dense light brownish yello onal orange mottle slightly s m SAND.</td> <td>silty sandy AY with rootlets silty slightly um. bw with silty clayey fine to</td>	Depth (m) Type Result 0.30 ES	<u>ults</u> /2,2,2,3) 3/3,4,4,5) 58	(m) (m) 0.10 70.90 0.20 70.80 1.10 69.90	Legend (Soft) (CLAY. (Soft) I Firm lig sandy Lerse (Mediur occasi mediur	grass topped brown slightly Sand is fine. (TOPSOIL) brown slightly silty sandy CL hout. Sand is fine. ght yellowish brown slightly CLAY. Sand is fine to mediu of fine to medium sand. m dense light brownish yello onal orange mottle slightly s m SAND.	silty sandy AY with rootlets silty slightly um. bw with silty clayey fine to
	0.30 ES 1.00 SPT 1.20 ES 2.00 SPT N=16 (3,3/) 3.00 SPT N=5 (8,8/12,15)	/2,2,2,3) 3/3,4,4,5) 58	0.10 70.90 0.20 70.80 1.10 69.90	CLAY (Soft) t throug sandy Lense of Mediur	Sand is fine. (TOPSOIL) brown slightly silty sandy CL hout. Sand is fine. ght yellowish brown slightly <u>CLAY. Sand is fine</u> to mediu <u>of fine to medium</u> sand. m dense light brownish yello onal orange mottle slightly s m SAND.	AY with rootlets silty slightly um.
	5.00 SPT N=23 (2,2/3	¥/5,6,5,5)	3.70 67.30 4.30 66.70 4.40 66.60 5.00 66.00	SAND Subang sandst X Very st CLAY. (Soft) C X (Mediu coarse (Stiff) I X X X Sand i	tiff light greyish yellow slight Sand is fine. CLAY. Im dense) light yellow slight SAND. ight greyish yellow slightly s	avel is medium of tly silty sandy ly clayey fine to silty sandy CLAY.
Hole Diameter th Base Diameter		Depth Top	Chiselling Depth Base Dui	g iration Tool		nd Orientation Inclination Orienta

		U								· · ·		<u> </u>		
-		: Stonestreet			Client: I	EPL 001				Date: 17/0	2/2023			
	on: As s Ref 5.3)	hown on ES '	Volume	93: 11.1	Contrac	tor: SI Gro	und Inve	stigation L	imited	Co-ords: E	605972.00) N137283.(00	
•		GM12014			Crew N	ame: SE						art Compet	itor	
-	ehole N		Hole	е Туре		Level		Logged	Ву	Windowles So	<u>ss Sample</u> cale		e Numbe	ər
	WS02	2	W	/LS	56	.40m AoD		JE		1	:51	She	et 1 of 1	1
Well	Water Strikes	-		n Situ Testir	-	Depth (m)	Level (m)	Legend		Strat	um Descrip	otion		
	Suikes	Depth (m)	Туре	Resul	ts	0.10	56.30		(Soft) a	rass topped l	orown sliaht	lv siltv slightly	/	
		0.30 0.80 1.00	ES ES SPT	N=8 (1,1/2	,2,2,2)	0.45 0.55 1.00 1.10	55.95 55.85 55.40 55.30		gravely subang and mix (Soft to sandy C Gravel i of brick (Soft to	sandy CLAY ular to subroo <u>ked natural lit</u> firm) brown s CLAY with roo is subangular and mixed n firm) grey wi vith occasiona	Sand is find unded fine to hologies. (T slightly silty bitlets throug r to subroun atural litholo th orange m	e. Gravel is o medium of OPSOIL) slightly grave hout. Sand is ded fine to m ogies. ottle slightly	brick ly fine. jedium	- - - - - - - - - - - - - - - - - - -
						1.65	54.75	× × ×	(Mediur fine SA	n dense) bro	wn slightly s	ilty slightly cl	ayey	-
		2.00	SPT	N=8 (2,2/2	,2,2,2)				Becomir (Soft) b Loose li gravelly	ng clayey. rown sandy (ight greyish y r fine to coars nded to round	ellow slightl se SAND. G	y silty slightly ravel is	/	2
		3.00	SPT	N=12 (2,3/3	3,3,3,3)				Firm to coarse	stiff grey CLA	AY with occa	isional fine to)	3
		4.00	SPT	N=17 (3,3/4	4,4,5)	4.00	52.40			End of I	Borehole at 4	.000m		4 —
														5 —
														6 —
														8 —
														9 —
														10
Depth E	Hole Diam		Casing th Base	Diameter Diameter	Depth Te	op Depth Ba	Chiselling		Tool	Depth Top	Inclination Depth Base	and Orientation	Orienta	ation
			ui Dase	Diameter							Deptit Base		Orienta	auUII
through	CES: Are	a checked usir STING: Environ ehole backfilled	mental	samples obtai	ned 0.30	m and 0.80m	n depth, S	PT conduct	ed betwee				AG	S

-			reet Green		Client: E	EPL 001				Date: 16/0	2/2023		
	ion: As Ref 5.3		ES Volume	93: 11.1	Contrac	tor: SI Grou	und Inve	stigation L	imited	Co-ords: E	607493.00	N138234.0	00
		GM12014				ame: SE						art Compet	itor
-	rehole N			е Туре		Level		Logged	Ву		ss Sample cale		e Number
	WS0	1		/LS	1	.10m AoD		JE	1	1	:51	She	et 1 of 1
ell	Water Strikes			n Situ Testi Resu	-	Depth (m)	Level (m)	Legend		Strat	um Descrip	otion	
		0.30				0.10 0.25	49.00 48.85		sandy (TOPS (Soft) b	rass topped CLAY with roo OIL) prown slightly throughout.	silty slightly	hout. Sand is	s fine.
		1.00 1.20		N=14 (1,1/1	1,1,1,1)	0.85 1.10	48.25 48.00		(Firm) I silty slig (Mediu mediur	brownish grey ghtly sandy C m dense) ligh n SAND. ownish grey	/ with orange LAY. Sand is it brown sligl	e mottle sligh s fine. htly clayey fir	ne to
Y		2.00	SPT	N=10 (2,2/2	2 3 3 2)	1.75 2.00	47.35 47.10	× × × × × × × × ×	Sand is subang Dark gr	s fine to medi gular fine of m ey.	um. Gravel is iixed natural	s angular to	/
		2.00		10 (2,2/2	2,0,0,2)			× × × × *	Loose is suba mixed i	lueish grey C light yellowish ngular to sub natural litholo	n brown silty rounded fine gies.	GRAVEL. G	ravel of
		3.00	SPT	N=10 (1,1/ [,]	1,2,3,4)	2.70	46.40		Stiff da	rk blueish gre	ey CLAY.		
						4.00	45.10		- - -	End of	Borehole at 4	.000m	
													1
	Hole Dian			Diameter			Chiselling					and Orientation	
oth	Base	Diameter	Depth Base	Diameter	Depth To	p Depth Ba	se Dura	ation	Tool	Depth Top	Depth Base	Inclination	Orientatio
₹VI lap	se of bo	ehole wall		4 and Genny 0mbgl and 2.	70mbgl. 1	ESTING: Er	vironmer	ntal sample:	s obtained	d 0.30m and ⁻	1.20m depth		AGS

	1941 0110										-		
Project Nam	ne: Stonestreet	Green	Solar	Client: I	EPL 001				Date: 17/0	2/2023			
	shown on ES	Volume	3: 11.1	Contrac	tor: SI Grou	und Inve	stigation L	imited	Co-ords: E	606627.00	N138172.	00	
<u>(Doc Ref 5.3</u> Project No.	-				ame: SE		5				art Compet		
Borehole		Holo	Туре				Logged	By		<u>ss Sample</u> cale		e Numbe	or
WS			'LS	48	.40m AoD		JE	Dy		:51	-	et 1 of 7	
w Wate	r Sample	e and Ir	n Situ Testir	ng	Depth	Level				- ·			
VVell Strike	Depth (m)	Туре	Resul	ts	(m)	(m)	Legend		Strat	um Descrip	Dtion		
	-			,1,2,2) ,2,2,2)	Depth (m) 0.10 0.95 2.30 3.70 5.00	Level (m) 48.30 47.45 46.10 44.70 43.40		sandy C through subang and mix MADE (slightly is fine to subrour natural <i>Fragmen</i> Firm gre CLAY w inclusio <i>Becomir</i> Medium slightly subang mixed n	rass topped LAY with oc out. Sand is Sandy CLAY Sandy CLAY Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control C	casional gra fine to coars unded fine to thologies. (Tr Soft to firm) b with occasic avel is subar coarse of bric mind cement ge mottle slig al 1-2mm bla ine to coarse yellowish bri to coarse S/ pounded fine to gies.	y silty slightly vel and rootl be. Gravel is o coarse of b OPSOIL) prown slightly and gravel. S orgular to ck and mixed ck and mixed ck and mixed ck organic charter of the pown slightly (AND. Gravel to medium of	ets vrick y silty Sand d ilty clayey is	
Hole Dia Depth Base		Casing th Base	Diameter Diameter	Depth To	op Depth Ba	Chiselling se Dura	ation	Tool	Depth Top 0.00	Inclination Depth Base 5.00	and Orientation Inclination 90	Orient	9 9 10 ation
after 20 minu	vrea checked usir te interval. STABI ed between 1.00n h.	ILITY: Bo	orehole stable	through	out. TESTING	G: Enviror	nmental sam	nples obta	ined 0.30m a	and 1.10m d		AG	S

	0									. <u> </u>		-		
Projec	t Name:	Stonestreet	Green	Solar	Client: [EPL 001				Date: 16/0	2/2023			
		hown on ES '	Volume	3: 11.1	Contrac	tor: SI Grou	und Inve	stigation L	imited	Co-ords: E	604771.00	N137710.0	00	
	<u>Ref 5.3)</u>	M42014				ame: SE					uipment: D			
-	ehole N	SM12014		е Туре				Logged	D ₁ /		<u>ss Sample I</u> cale		e Numbe	or.
DON	WS05			/LS	48	10m AoD		JE	Бу		:51	-	et 1 of 1	
	Water	Sample		n Situ Testir	· · · · · · · · · · · · · · · · · · ·		Level							
Well	Strikes			Resul	-	(m)	(m)	Legend		Strat	um Descrip	tion		
Well	Water Strikes	Sample Depth (m) 0.30 1.00 2.00 3.00 4.00	spr spr spr spr		ts 3,4,4,5) ,1,1,1)	Depth (m) 0.10 1.00 1.40	Level (m) 48.00 47.10 46.70 43.90		occasio angular natural MADE of CLAY w Gravel mixed r <i>Ceramic</i> Medium slightly angular natural Soft to t	rass topped nal gravels a to subangul lithologies. S GROUND: (\$ <i>i</i> th occasion is angular to <u>atural litholo</u> <i>c/ brick fragg</i> to subround lithologies. firm blueish §	brownish yel to coarse SA led fine to me grey CLAY.	y silty CLAY J. Gravel is dium of mixe TOPSOIL) Torsovn slightly d rare sand. ine to mediu s fine.	ed y silty im of clayey is	
														10 —
	Hole Dirro	tor	Casiar	Diamotor			Chicallin			1	Inclination	and Origination		
Depth E	Hole Diame Base [Casing th Base	Diameter Diameter	Depth To	op Depth Ba	Chiselling se Dura	ition	Tool	Depth Top	Inclination Depth Base	and Orientation Inclination	Orienta	ation
Rema	arks	I			L	1		I		1	1			
		a checked usir												
BACKF	ILL: Bor	STING: Environ ehole installed	with pla	in pipe with be	entonite s	urround from	1 4.20mbg	l to 3.20mb	gl, slotted	pipe with gr	avel surroun	d from	AG	S
		und level, and												

Griff.	5010118												
Project Name	: Stonestreet	Green	Solar	Client:	EPL 001				Date: 16/0	2/2023			
Location: As s	hown on ES	Volume	9: 11.1	Contrac	ctor: SI Gro	und Inve	stigation I	imited	Co-ords: F	607106.00) N138080.0)()	
(Doc Ref 5.3)	2140044				lame: SE						art Compet		
Project No. : 0 Borehole N		Hole	Tuno	Crew N	Level		Logged	Dv/	Windowles	<u>ss Sample</u> cale	Rig	e Numbe	o.r.
WS06			e Type /LS	48	3.40m AoD		JE	Бу		:51	-	et 1 of 1	
Water			n Situ Testii		Depth	Level					I		
Well Strikes	Depth (m)	Туре	Resul	-	(m)	(m)	Legend		Strat	um Descrip	otion	ſ	
•_• •]	,				0.10	48.30				brown slight	ly silty CLAY.		
· — . — ·	0.30	ES			0.20	48.20		COPS (Soft to	firm) brown	slightly silty	CLAY.	/	-
··.—·]									eyish brown t and sand. S		mottle CLAY	with	-
· - ·	1.00	ES										ſ	_ _ 1 _
	1.00	SPT	N=8 (2,2/2	,2,2,2)								ſ	' -
· ·					1.30	47.10	××	Firm lig fine.	ht greyish br	own sandy s	silty CLAY. Sa	nd is	
· _ ·								inte.				ſ	-
	2.00	SPT	N=8 (2,2/2	.2.2.2)			X	Becomi	ng slightly s	ilty.		ſ	2 —
· — ·			- () -	, , , ,	2.20	46.20	\mathbf{x}				ellowish brov	vn	
· · · · ·							$\times \times $	slightly	gravelly silty	fine to med	um SAND. G nedium of mi	ravel	-
					2.60	45.80		\ natural	lithologies.		nealum of mi	xea	
	3.00	SPT	N=12 (3,3/3	3,3,3,3)				Siff dar	k blueish gre	y CLAY.		ſ	3 -
												ſ	-
•								Becomi	na stiff			ſ	-
								2000/////	ig oun			ſ	
	4.00	SPT	N=16 (3,3/4	1,4,4,4)								ſ	4 _
					4.40	44.00							-
					4.40	44.00			End of	Borehole at 4	1.400m	ſ	
												ſ	
												ſ	5 —
												ſ	
												ſ	-
												ſ	
												ſ	6 _
												ſ	-
												ſ	
												ſ	7 —
												ſ	
												ſ	-
												ſ	-
												ſ	8 —
												ſ	
												ſ	
												ľ	
												ſ	9 _
												ſ	-
												ſ	
												ſ	-
												ſ	10 _
									1				
Hole Diame Depth Base		Casing th Base	Diameter Diameter	Depth T	op Depth Ba	Chiselling se Dura	ation	Tool	Depth Top	Inclination Depth Base	and Orientation	Orienta	ation
Remarks			l	1	I		I		1	1			
SERVICES: Are													
BACKFILL: Bor	ehole installed	with pla	in pipe with be	entonite s	surround from	14.40mbg	gl to 3.40mb	gl, slotted	l pipe with gr	avel surrour	id from	AG	S
3.40mbgl to gro	und level, and	sealed V	with pentonite		NATION: BOR	enole tern	unated at re	quired de	epin.				

											-		
-	ne: Stonestreet			Client: E	EPL 001				Date: 16/0	2/2023			
Location: As (Doc Ref 5.	s shown on ES ` 3)	volume	3: 11.1	Contrac	tor: SI Gro	und Inve	stigation L	imited			N136871.0		
Project No.	: GM12014			Crew N	ame: SE				Drilling Eq	uipment: D ss Sample	art Competi Ria	itor	
Borehole			туре		Level		Logged	Ву	S	cale	Page	e Numbe	
WS			/LS	· · · · · ·	.20m AoD		JE		1	:51	She	et 1 of 1	i
Well Wate		Type	n Situ Testir Resul	-	Depth (m)	Level (m)	Legend		Strat	um Descrip	otion		
• •		туре	Resul	15	0.10	60.10					y silty CLAY	with	
· _ ·	0.30	ES			0.25	59.95	× × ×	Stiff bro	throughout.	ilty CLAY.		/	-
·· — ·]							×	Stiff yel CLAY v	lowish browr	slightly silty al gravel and	slightly sand 1-2mm blac	ly :k	=
— . — .	1.00	ES					×××				o medium. G to medium o		
· ·	1.00	SPT	N=12 (2,2/3	3,2,3,4)			×		natural litholo				
· · _ ·]					1.55	58.65	××-	04:55 1-1-1	a ist and a	A) (G in a second		
								Stimblu	ieish grey CL	AY with rare	tine sand.		-
	2.00	SPT	N=11 (2,2/2	2,3,2,4)			[<u> </u>						2 -
· _ ·													
• • <u>•</u> • •	3.00	SPT	N=16 (3,3/3	3.4.4.5)									3 —
				,,,,,,,,,,									
	4.00	SPT	N=18 (3,3/4	,4,4,6)									4 —
													-
	5.00	SPT	N=24 (4,5/5	5,7,6,6)	5.00	55.20		Gravel i		angular fine Borehole at 5	of mudstor	ıe.	5 —
				-					End of	borenole at 5	.000111		
													6 -
													7 —
													8 —
		1											9 —
													10 -
													-
Hole Di			Diameter	D		Chiselling	tion	Tos	Derth T		and Orientation		
Depth Base	Diameter Dep	oth Base	Diameter	Depth To	p Depth Ba	se Dura		Tool	Depth Top	Depth Base	Inclination	Orienta	auon
Remarks													
	Area checked usir [ESTING: Environ												
BACKFILL: E	Borehole installed ground level, and	with pla	in pipe with be	entonite s	urround from	1 5.00mbg	l to 4.00mb	gl, slotted	l pipe with gr		d from	AG	3
	- ,							•	•				

-			reet Green		Client: E	EPL 001				Date: 16/0	2/2023		
	ion: As s Ref 5.3)		ES Volume	93: 11.1	Contrac	tor: SI Grou	ind Inve	stigation	Limited	Co-ords: E	605020.00	N137145	.00
	-	GM12014			Crew N	ame: SE					uipment: D ss Sample		etitor
Boi	rehole N WS08			e Type /LS	56	Level .90m AoD		Logge	-	S	cale :51	Pag	je Number eet 1 of 1
ell	Mator	Sar	mple and li	n Situ Testii	ng	Depth (m)	Level (m)	Legend		-1	um Descrip		
X		Depth (Resul	ts	0.10	56.80			rass topped	brown slightl	y silty to silt	y ,
		0.20 1.00 2.00 3.00	ES SPT SPT	N=12 (1,2/2 N=23 (2,3/4 N=26 (5,5/6	1,4,7,8)	0.30	55.45		(Soft) t CLAY v subrou natural Stiff grv sandy mediur of mixe Very st Yellow v Pecomi Red ox	(TOPSOIL) prown slightly with rootlets th nded fine to r lithologies. ey with orang CLAY with ran n. Gravel is s de natural lithd iff blueish gree staining. ing dark blue de staining. fing dry and the End of the End of the End of the the stain is the stain is the stain is the stain is the stain is the stain is the stain is the stain is the stain is the stain is the stain is the stain is the stain is the stain is the stain is the stain is the stain is the s	nroughout. G nedium of br e mottle sligl e gravels. S ubangular to ologies. y CLAY. <u>pish grey</u> .	Bravel is ang ick and mix htly silty slig and is fine t subrounde	gular to ed htly o
	Hole Diam	eter	Casing	Diameter			Chiselling				Inclination	and Orientatio	n
oth		Diameter	Depth Base	Diameter	Depth To	p Depth Bas		ation	Tool	Depth Top	Depth Base		Orientati
RV er 2	0minute i	interval. ST		4 and Genny	througho	ut. TESTING	: Environ	mental sa	nples obta	ined 0.20m a	nd 1.00m de	•	AGS

-			eet Gree	ne 3: 11.1	Client:					Date: 17/0			
oc F	Ref 5.3)			n e J. 11.1		ctor: SI Grou	und Inve	estigation	Limited			N137951.0 art Competi	
-		GM12014		. .	Crew N	lame: SE				Windowles	s Sample I	Rig	
lor	ehole N WS09		H	ole Type WLS		Level 90m AoD		Logge JE		-	cale :51	-	Number et 1 of 1
	Water		nple and	I In Situ Test		Depth	Level			-			
II	Strikes	Depth (r	-		-	(m)	(m)	Legen			um Descrip		
•						0.10 0.30	44.80 44.60		CLAÝ	grass topped I with rootlets th			sand
•		0.40	ES	;		0.00	44.00			. (TOPSOIL) prown slightly	silty slightly	sandy CLAY	with
										onal rootlets. rey with orang			sional
		1.00 1.00	ES SP		2,2,2,2)				sand. \$	Sand is fine to	medium.		
					, , , ,	1.25 1.40	43.65 43.50	× ×, ×		e) light brownish yellow slightly silty slightly / slightly gravelly fine to medium SAND. I is angular to subrounded fine to medium of natural lithologies. I ight grey with orange mottle slightly sandy with rare gravel. Sand is fine to coarse. I is subangular to subrounded fine to mediu ted natural lithologies. dark blueish grey CLAY. I ight brownish grey with orange mottle y clayey fine to medium SAND. ark blueish grey CLAY.			
						1.65	43.25		Gravel				
		2.00	SP	T N=8 (2,2/2	2,2,2,2)	2.00	42.90		– (Firm)				
						2.10	42.80		- Gravel				
									_ (Stiff) o				
		_	_	_					slightly				
•		3.00	SP	T N=12 (2,3/	(3,3,3,3)				Stiff da -]				
								E					
•									-	· · · ·	<i>"</i>	, , , ,	
		4.00	SP	T N=17 (3,3/	4,4,4,5)				- Vaminat	al mudstone ed partially v	weathered i	mudstone.	rey
								E	Becom	ing slightly g າ of MUDST	ravelly; and	gular fine to	
									-				
						4.90	40.00		-	End of I	Borehole at 4	.900m	
th E	ırks	liameter	Depth Bas	ng Diameter e Diameter	Depth T			ration	Tool	Depth Top	Depth Base	and Orientation	Orientatio

	01111													
Projec	t Name	Stonestreet	Green	Solar	Client: I	EPL 001				Date: 17/0	2/2023			
		hown on ES '	Volume	9: 11.1	Contrac	tor: SI Gro	und Inve	stigation L	imited	Co-ords: E	606818.00	N138371.0		
	<u>Ref 5.3)</u>	GM12014				ame: SE					uipment: D			
-	ehole N		Hole	туре		Level		Logged	Du		ss Sample I cale	Rig	e Numbe	or .
DU	WS10			/LS	55	.30m AoD		JE	Бу		:51	-	et 1 of 1	
	Water			n Situ Testii		Depth	Level							
Well	Strikes	Depth (m)	Туре	Resul	-	(m)	(m)	Legend		Strat	um Descrip	tion		
· · · ·						0.10	55.20		sandy 0	rass topped CLAY with roo	otlets through	nout. (TOPS	, OIL) /	-
· ·		0.40	ES			0.35	54.95		(Firm) b	orown slightly onal rootlets.	silty slightly sand is fine	sandy CLAY	with	
										ey with orang			LAY.	-
• •		1.00	SPT	N=7 (1,1/1	,2,2,2)				Rare fin	e sand.				1 —
		1.20	ES											-
														-
		2.00	SPT	N=8 (1,1/2	,2,2,2)									2 _
								F====	Becomi	ng slightly s	ilty.			
														_
· - ·						2.80	52.50		Stiff da	rk blueish gre	ey CLAY with	occasional i	ron	
		3.00	SPT	N=11 (2,2/2	2,2,3,4)				staining	J.	-			3 -
														-
• •														-
		4.00	SPT	N=12 (2,2/3	3 3 3 3)			F						4 —
					,-,-,									-
														-
		5.00	SPT	N=13 (3,3/3	3,3,3,4)	5.00	50.30			End of	Borehole at 5	.000m		5 _
														-
														-
														6
														-
														-
														7 —
														-
														8 _
														9 —
														10 -
Depth	Hole Diamo		Casing th Base	Diameter Diameter	Depth Te	op Depth Ba	Chiselling se Dura	ition	Tool	Depth Top	Inclination Depth Base	and Orientation Inclination	Orienta	ation
Dopui			Dase	Diamoter	- Dopur II				1001		Dopui Dase	monnadum	Unerile	
													l	
Rema	arks													
SERVI	CES: Are	a checked usir	ng C.A.T	4 and Genny	prior to e	excavation. C		NATER: No	t recorded	d. STABILITY	: Borehole s			
BACK	FILL: Bor	STING: Environ ehole installed	with pla	in pipe with be	entonite s	urround from	1 5.00mbg	I to 4.00mb	gl, slotted	I pipe with gr		gi. d from	AG	S
4.00ml	ogl to gro	und level, and	sealed v	with bentonite	. TERMI	NATION: Bor	ehole terr	ninated at r	equired d	epth.				

	Griffi													
Projec	t Name:	: Stonestreet	Green	Solar	Client: F	EPL 001				Date: 16/0	2/2023			
		hown on ES	Volume	3: 11.1	Contrac	tor: SI Grou	und Inve	stigation L	imited	Co-ords: E	5606850.00	N137149.0	00	
	<u>Ref 5.3)</u>									Drilling Eq	uipment: D	art Compet		
-		GM12014		Turne		ame: SE		Leaved	D. /	Windowles	<u>ss Sample</u> cale	Rig		
DOI	ehole N WS11			e Type /LS	52	Level .50m AoD		Logged JE	Бу		:51	-	e Numb eet 1 of	
					· · · · · ·									İ
Well	Strikes	-			-	(m)	(m)	Legend		Strat	um Descrip	otion		
Well	Vater Strikes	Sample Depth (m) 0.30 1.00	ES ES	n Situ Testir Result	-	Depth (m) 0.10 0.20 0.70	Level (m) 52.40 52.30 51.80 48.50		sandy C (TOPSC (Soft) bi occasio (Soft to slightly is fine to fine to n (Firm to Orange Iron stai scale iro	rass topped LAY with ro- DIL) rown slightly nal rootlets. firm) light ye sandy CLAY o medium. G nedium of m stiff) light gr iron oxide in ning throug n oxide de ng dark gre nclusions: a ne.	silty slightly Sand is fine. Illowish brow with occasic iravel is anguixed natural ey CLAY. mottle. hout with s posits.	y silty slightly hout. Sand is sandy CLAY in slightly silt onal gravel. S Jar to suban lithologies. mall millime	y Sand gular	
	Hole Diame	eter	Casing	Diameter			Chiselling			1	Inclination	and Orientatior	1	
Depth			th Base	Diameter	Depth To	p Depth Ba		ation	Tool	Depth Top	Depth Base	Inclination	Orient	ation
				1										
				1										
Rema		I				I		I		J				
SERVI throug	CES: Are hout. TES	ea checked usin STING: Environ : Borehole term	mental	samples obtai	ined 0.30r								AG	S

Annex D

Laboratory Geo-environmental Testing Results

FINAL ANALYTICAL TEST REPORT SUPPLEMENT TO TEST REPORT 23/01472/1

Amendments: Re-issue following query/investigation

Envirolab Job Number:	23/01472	
Issue Number:	2	Date: 22 March, 2023

Client:

Wardell Armstrong (Bolton) 41-50 Futura Park Aspinall Way Middlebrook Bolton Lancashire UK BL6 6SU

Project Manager:	James Entwistle
Project Name:	Stonestreet Green Solar
Project Ref:	GM12014
Order No:	GM4633
Date Samples Received:	20/02/23
Date Instructions Received:	21/02/23
Date Analysis Completed:	03/03/23

Approved by:

Danielle Brierley Deputy Client Services Supervisor

Page 1 of 21

Client Project Name: Stonestreet Green Solar

Lab Sample ID	23/01472/1	23/01472/2	23/01472/3	23/01472/4	23/01472/5	23/01472/6	23/01472/7			
Client Sample No										
Client Sample ID	TP01	TP01	TP02	TP02	TP03	TP03	TP04			
Depth to Top	0.30	2.00	0.30	1.00	0.30	1.00	0.30			
Depth To Bottom									ы	
Date Sampled	15-Feb-23		etecti							
Sample Type	Soil - D		of D	od re						
Sample Matrix Code	6AE	6A	4A	5A	4AE	5A	6AE	Units	Limit of Detection	Method ref
% Moisture at <40C _A	19.7	20.0	18.0	16.9	18.1	14.4	20.8	% w/w	0.1	A-T-044
Dry Matter (Dry Solids) at 105C	-	-	-	-	-	-	-	% w/w	0.1	Calc-no stones
% Stones >10mm _A	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	% w/w	0.1	A-T-044
pH₀ ^{M#}	7.95	8.05	8.12	8.11	7.21	8.45	8.21	pН	0.01	A-T-031s
Sulphate (water sol 2:1) ^{D^{M#}}	<0.01	0.09	<0.01	<0.01	<0.01	<0.01	<0.01	g/l	0.01	A-T-026s
Sulphate (acid soluble) _D ^{M#}	560	590	500	650	340	<200	340	mg/kg	200	A-T-028s
Cyanide (free) _A ^{M#}	<1	<1	<1	<1	<1	<1	<1	mg/kg	1	A-T-042sFCN
Cyanide (complex) ^{M#}	<1	<1	<1	<1	<1	<1	<1	mg/kg	1	Calc
Cyanide (total) _A ^{M#}	<1	<1	<1	<1	<1	<1	<1	mg/kg	1	A-T-042sTCN
Thiocyanate _A	<5	<5	<5	<5	<5	<5	<5	mg/kg	5	A-T-041s
Phenols - Total by HPLC _A	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	mg/kg	0.2	A-T-050s
Sulphide _A	<5	<5	<5	<5	<5	<5	66	mg/kg	5	A-T-043-s
Organic Matter _D ^{M#}	3.7	2.4	1.8	0.5	1.7	0.1	1.5	% w/w	0.1	A-T-032s
SEM (Solvent Extractable Matter) - Dichloromethane _D	-	-	-	-	-	-	-	mg/kg	100	A-T-039s
Arsenic _D ^{M#}	5	22	8	7	4	3	5	mg/kg	1	A-T-024s
Boron (water soluble) _D ^{M#}	1.2	2.9	1.4	<1.0	<1.0	<1.0	1.0	mg/kg	1	A-T-027s
Cadmium _D ^{M#}	1.2	1.5	1.0	0.7	0.9	<0.5	1.0	mg/kg	0.5	A-T-024s
Copper _D ^{M#}	25	37	11	8	7	6	12	mg/kg	1	A-T-024s
Chromium _D ^{M#}	35	41	29	25	24	21	30	mg/kg	1	A-T-024s
Chromium (hexavalent) _D	<1	<1	<1	<1	<1	<1	<1	mg/kg	1	A-T-040s
Chromium (trivalent)	35	41	29	25	24	21	30	mg/kg	1	Calc
Lead _D ^{M#}	30	29	14	11	15	10	17	mg/kg	1	A-T-024s
Mercury⊳	<0.17	<0.17	1.44	2.44	<0.17	<0.17	0.27	mg/kg	0.17	A-T-024s
Nickel ^{D^{M#}}	26	47	28	27	19	21	24	mg/kg	1	A-T-024s
Selenium _D ^{M#}	<1	<1	<1	<1	<1	<1	<1	mg/kg	1	A-T-024s
Zinc _D ^{M#}	93	166	55	45	41	49	48	mg/kg	5	A-T-024s
TPH total (>C6-C40) ^{A^{M#}}	130	14	43	12	<10	<10	<10	mg/kg	10	A-T-007s

Client Project Name: Stonestreet Green Solar

Lab Sample ID	23/01472/1	23/01472/2	23/01472/3	23/01472/4	23/01472/5	23/01472/6	23/01472/7			
Client Sample No										
Client Sample ID	TP01	TP01	TP02	TP02	TP03	TP03	TP04			
Depth to Top	0.30	2.00	0.30	1.00	0.30	1.00	0.30			
Depth To Bottom									ion	
Date Sampled	15-Feb-23		Detection	ref						
Sample Type	Soil - D	_	t of D	od re						
Sample Matrix Code	6AE	6A	4A	5A	4AE	5A	6AE	Units	Limit of	Method
Asbestos in Soil (inc. matrix) ^										
Asbestos in soil _D #	NAD			A-T-045						
Asbestos Matrix (visual)⊳	-	-	-	-	-	-	-			A-T-045
Asbestos Matrix (microscope)⊳	-	-	-	-	-	-	-			A-T-045
Asbestos ACM - Suitable for Water Absorption Test? _D	N/A			A-T-045						

Client Project Name: Stonestreet Green Solar

	-							-		
Lab Sample ID	23/01472/1	23/01472/2	23/01472/3	23/01472/4	23/01472/5	23/01472/6	23/01472/7			
Client Sample No										
Client Sample ID	TP01	TP01	TP02	TP02	TP03	TP03	TP04			
Depth to Top	0.30	2.00	0.30	1.00	0.30	1.00	0.30			
Depth To Bottom									ion	
Date Sampled	15-Feb-23		etect	jf						
Sample Type	Soil - D		Limit of Detection	Method ref						
Sample Matrix Code	6AE	6A	4A	5A	4AE	5A	6AE	Units	Limi	Meth
PAH-16MS										
Acenaphthene _A ^{M#}	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-019s
Acenaphthylene _A ^{M#}	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-019s
Anthracene _A ^{M#}	0.05	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	mg/kg	0.02	A-T-019s
Benzo(a)anthracene ^{A^{M#}}	0.31	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	0.04	A-T-019s
Benzo(a)pyrene₄ ^{M#}	0.31	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	0.04	A-T-019s
Benzo(b)fluoranthene _A ^{M#}	0.47	<0.05	0.07	<0.05	<0.05	<0.05	<0.05	mg/kg	0.05	A-T-019s
Benzo(ghi)perylene _A ^{M#}	0.29	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	0.05	A-T-019s
Benzo(k)fluoranthene _A ^{M#}	0.14	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	mg/kg	0.07	A-T-019s
Chrysene _A ^{M#}	0.41	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	mg/kg	0.06	A-T-019s
Dibenzo(ah)anthracene _A ^{M#}	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	0.04	A-T-019s
Fluoranthene _A ^{M#}	0.73	<0.08	0.11	<0.08	<0.08	<0.08	<0.08	mg/kg	0.08	A-T-019s
Fluorene ^{AM#}	0.02	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-019s
Indeno(123-cd)pyrene ^{AM#}	0.27	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	0.03	A-T-019s
Naphthalene A ^{M#}	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	0.03	A-T-019s
Phenanthrene ₄ ^{M#}	0.27	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	0.03	A-T-019s
Pyrene _A ^{M#}	0.66	<0.07	0.10	<0.07	<0.07	<0.07	<0.07	mg/kg	0.07	A-T-019s
Total PAH-16MS _A ^{M#}	3.95	<0.08	0.28	<0.08	<0.08	<0.08	<0.08	mg/kg	0.01	A-T-019s

Client Project Name: Stonestreet Green Solar

Lab Sample ID	23/01472/8	23/01472/9	23/01472/10	23/01472/11	23/01472/12	23/01472/13	23/01472/14			
Client Sample No										
Client Sample ID	TP04	TP05ws	TP05ws	TP06	TP06	WS01	WS01			
Depth to Top	1.00	0.30	1.00	0.30	1.00	0.30	1.20			
Depth To Bottom									uo	
Date Sampled	15-Feb-23	16-Feb-23	16-Feb-23	15-Feb-23	15-Feb-23	17-Feb-23	17-Feb-23		etecti	_
Sample Type	Soil - D	Soil - D	Soil - D	Soil - D	Soil - D	Soil - D	Soil - D		of De	od re
Sample Matrix Code	5A	3	6A	6A	5A	6A	5A	Units	Limit of Detection	Method ref
% Moisture at <40C _A	15.8	17.7	15.5	25.5	17.0	17.4	16.7	% w/w	0.1	A-T-044
Dry Matter (Dry Solids) at 105C	-	-	-	-	-	-	-	% w/w	0.1	Calc-no stones
% Stones >10mm _A	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	% w/w	0.1	A-T-044
pH₀ ^{M#}	8.08	7.53	8.24	7.86	8.07	7.87	8.11	pН	0.01	A-T-031s
Sulphate (water sol 2:1) ^{D^{M#}}	0.05	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	g/l	0.01	A-T-026s
Sulphate (acid soluble) _D ^{M#}	<200	310	<200	730	<200	<400	<200	mg/kg	200	A-T-028s
Cyanide (free) _A ^{M#}	<1	<1	<1	<1	<1	<1	<1	mg/kg	1	A-T-042sFCN
Cyanide (complex) ^{M#}	<1	<1	<1	<1	<1	<1	<1	mg/kg	1	Calc
Cyanide (total) _A ^{M#}	<1	<1	<1	<1	<1	<1	<1	mg/kg	1	A-T-042sTCN
Thiocyanate₄	<5	<5	<5	<5	<5	<5	<5	mg/kg	5	A-T-041s
Phenols - Total by HPLC _A	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	mg/kg	0.2	A-T-050s
Sulphide _A	<5	<5	<5	59	<5	<5	<5	mg/kg	5	A-T-043-s
Organic Matter _D ^{M#}	0.1	1.5	0.8	3.9	0.2	0.5	0.2	% w/w	0.1	A-T-032s
SEM (Solvent Extractable Matter) - Dichloromethane _D	-	-	-	-	-	-	-	mg/kg	100	A-T-039s
Arsenic _D ^{M#}	6	6	23	7	10	31	7	mg/kg	1	A-T-024s
Boron (water soluble) _D ^{M#}	<1.0	<1.0	<1.0	1.8	<1.0	<1.0	<1.0	mg/kg	1	A-T-027s
Cadmium _D ^{M#}	0.8	1.1	2.4	1.4	1.0	1.4	0.6	mg/kg	0.5	A-T-024s
Copper _D ^{M#}	11	7	23	14	8	8	5	mg/kg	1	A-T-024s
Chromium _D ^{M#}	22	32	25	44	23	23	17	mg/kg	1	A-T-024s
Chromium (hexavalent) _D	<1	<1	<1	<1	<1	<1	<1	mg/kg	1	A-T-040s
Chromium (trivalent)	22	32	25	44	23	23	17	mg/kg	1	Calc
Lead _D ^{M#}	10	13	20	24	9	16	9	mg/kg	1	A-T-024s
Mercury⊳	<0.17	<0.17	0.21	<0.17	<0.17	<0.17	<0.17	mg/kg	0.17	A-T-024s
Nickel ^{d^{M#}}	26	21	35	31	24	40	18	mg/kg	1	A-T-024s
Selenium _D ^{M#}	<1	<1	<1	<1	<1	<1	<1	mg/kg	1	A-T-024s
Zinc _D ^{M#}	38	47	67	74	27	42	33	mg/kg	5	A-T-024s
TPH total (>C6-C40) ^{A^{M#}}	<10	<10	<10	90	<10	<10	<10	mg/kg	10	A-T-007s

Client Project Name: Stonestreet Green Solar

Lab Sample ID	23/01472/8	23/01472/9	23/01472/10	23/01472/11	23/01472/12	23/01472/13	23/01472/14			
Client Sample No										
Client Sample ID	TP04	TP05ws	TP05ws	TP06	TP06	WS01	WS01			
Depth to Top	1.00	0.30	1.00	0.30	1.00	0.30	1.20			
Depth To Bottom									io	
Date Sampled	15-Feb-23	16-Feb-23	16-Feb-23	15-Feb-23	15-Feb-23	17-Feb-23	17-Feb-23		Detection	يو
Sample Type	Soil - D	Soil - D	Soil - D	Soil - D	Soil - D	Soil - D	Soil - D		of D	od ref
Sample Matrix Code	5A	3	6A	6A	5A	6A	5A	Units	Limit of	Method
Asbestos in Soil (inc. matrix) ^										
Asbestos in soil _D #	NAD	NAD	NAD	NAD	NAD	NAD	NAD			A-T-045
Asbestos Matrix (visual)₀	-	-	-	-	-	-	-			A-T-045
Asbestos Matrix (microscope) _D	-	-	-	-	-	-	-			A-T-045
Asbestos ACM - Suitable for Water Absorption Test? _D	N/A	N/A	N/A	N/A	N/A	N/A	N/A			A-T-045

Client Project Name: Stonestreet Green Solar

						1				
Lab Sample ID	23/01472/8	23/01472/9	23/01472/10	23/01472/11	23/01472/12	23/01472/13	23/01472/14			
Client Sample No										
Client Sample ID	TP04	TP05ws	TP05ws	TP06	TP06	WS01	WS01			
Depth to Top	1.00	0.30	1.00	0.30	1.00	0.30	1.20			
Depth To Bottom									ion	
Date Sampled	15-Feb-23	16-Feb-23	16-Feb-23	15-Feb-23	15-Feb-23	17-Feb-23	17-Feb-23		etect	J.
Sample Type	Soil - D	Soil - D	Soil - D	Soil - D	Soil - D	Soil - D	Soil - D		Limit of Detection	Method ref
Sample Matrix Code	5A	3	6A	6A	5A	6A	5A	Units	Limi	Meth
PAH-16MS										
Acenaphthene _A ^{M#}	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-019s
Acenaphthylene₄ ^{M#}	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-019s
Anthracene _A ^{M#}	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	mg/kg	0.02	A-T-019s
Benzo(a)anthracene₄ ^{M#}	<0.04	<0.04	<0.04	0.17	<0.04	<0.04	<0.04	mg/kg	0.04	A-T-019s
Benzo(a)pyrene _A ^{M#}	<0.04	<0.04	<0.04	0.20	<0.04	<0.04	<0.04	mg/kg	0.04	A-T-019s
Benzo(b)fluoranthene₄ ^{M#}	<0.05	<0.05	<0.05	0.31	<0.05	<0.05	<0.05	mg/kg	0.05	A-T-019s
Benzo(ghi)perylene₄ ^{M#}	<0.05	<0.05	<0.05	0.17	<0.05	<0.05	<0.05	mg/kg	0.05	A-T-019s
Benzo(k)fluoranthene _A ^{M#}	<0.07	<0.07	<0.07	0.11	<0.07	<0.07	<0.07	mg/kg	0.07	A-T-019s
Chrysene _A ^{M#}	<0.06	<0.06	<0.06	0.27	<0.06	<0.06	<0.06	mg/kg	0.06	A-T-019s
Dibenzo(ah)anthracene _A ^{M#}	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	0.04	A-T-019s
Fluoranthene _A ^{M#}	<0.08	<0.08	<0.08	0.44	<0.08	<0.08	<0.08	mg/kg	0.08	A-T-019s
Fluorene ^{AM#}	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-019s
Indeno(123-cd)pyrene ^{AM#}	<0.03	<0.03	<0.03	0.16	<0.03	<0.03	<0.03	mg/kg	0.03	A-T-019s
Naphthalene A ^{M#}	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	0.03	A-T-019s
Phenanthrene ₄ ^{M#}	<0.03	<0.03	<0.03	0.11	<0.03	<0.03	<0.03	mg/kg	0.03	A-T-019s
Pyrene _A ^{M#}	<0.07	<0.07	<0.07	0.42	<0.07	<0.07	<0.07	mg/kg	0.07	A-T-019s
Total PAH-16MS _A ^{M#}	<0.08	<0.08	<0.08	2.36	<0.08	<0.08	<0.08	mg/kg	0.01	A-T-019s

Client Project Name: Stonestreet Green Solar

Lab Sample ID	23/01472/15	23/01472/16	23/01472/17	23/01472/18	23/01472/19	23/01472/20	23/01472/21			
Client Sample No										
Client Sample ID	WS02	WS02	WS03	WS03	WS04	WS04	WS05			
Depth to Top	0.30	0.80	0.30	1.20	0.30	1.10	0.30			
Depth To Bottom									uo	
Date Sampled	17-Feb-23	17-Feb-23	16-Feb-23	16-Feb-23	17-Feb-23	17-Feb-23	16-Feb-23		etect	ч-
Sample Type	Soil - D		of D	od re						
Sample Matrix Code	6AE	5A	3	5A	6AB	3	6AE	Units	Limit of Detection	Method ref
% Moisture at <40C _A	18.1	18.7	25.5	24.0	21.4	18.6	19.5	% w/w	0.1	A-T-044
Dry Matter (Dry Solids) at 105C	-	-	-	-	-	-	-	% w/w	0.1	Calc-no stones
% Stones >10mm _A	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	% w/w	0.1	A-T-044
pH₀ ^{M#}	7.92	8.01	7.69	7.11	7.86	8.14	7.76	pН	0.01	A-T-031s
Sulphate (water sol 2:1) ^{D^{M#}}	<0.01	<0.01	<0.01	0.05	0.01	0.01	<0.01	g/l	0.01	A-T-026s
Sulphate (acid soluble) _D ^{M#}	510	300	530	300	470	<200	540	mg/kg	200	A-T-028s
Cyanide (free) _A ^{M#}	<1	<1	<1	<1	<1	<1	<1	mg/kg	1	A-T-042sFCN
Cyanide (complex) ^{M#}	<1	<1	<1	<1	<1	<1	<1	mg/kg	1	Calc
Cyanide (total) _A ^{M#}	<1	<1	<1	<1	<1	<1	<1	mg/kg	1	A-T-042sTCN
Thiocyanate₄	<5	<5	<5	<5	<5	<5	<5	mg/kg	5	A-T-041s
Phenols - Total by HPLC _A	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	mg/kg	0.2	A-T-050s
Sulphide _A	<5	<5	<5	<5	<5	<5	<5	mg/kg	5	A-T-043-s
Organic Matter _D ^{M#}	2.7	1.4	3.3	1.9	3.0	0.3	3.4	% w/w	0.1	A-T-032s
SEM (Solvent Extractable Matter) - Dichloromethane _D	-	-	-	-	-	-	-	mg/kg	100	A-T-039s
Arsenic ^{D^{M#}}	8	6	8	1	5	6	8	mg/kg	1	A-T-024s
Boron (water soluble) _D ^{M#}	<1.0	<1.0	1.4	<1.0	<1.0	<1.0	<1.0	mg/kg	1	A-T-027s
Cadmium _D ^{M#}	0.9	0.7	1.9	<0.5	0.9	0.9	1.1	mg/kg	0.5	A-T-024s
Copper _D ^{M#}	11	5	16	10	23	11	16	mg/kg	1	A-T-024s
Chromium _D ^{M#}	22	16	51	17	24	21	25	mg/kg	1	A-T-024s
Chromium (hexavalent)₀	<1	<1	<1	<1	<1	<1	<1	mg/kg	1	A-T-040s
Chromium (trivalent)	22	16	51	17	24	21	25	mg/kg	1	Calc
Lead _D ^{M#}	19	12	21	9	33	11	22	mg/kg	1	A-T-024s
Mercury⊳	0.49	<0.17	<0.17	<0.17	0.30	<0.17	<0.17	mg/kg	0.17	A-T-024s
Nickel ^{d^{M#}}	22	16	34	14	18	25	13	mg/kg	1	A-T-024s
Selenium ^{"M#}	<1	<1	<1	<1	<1	<1	<1	mg/kg	1	A-T-024s
Zinc ^{DM#}	49	33	80	30	92	31	49	mg/kg	5	A-T-024s
TPH total (>C6-C40) _A ^{M#}	<10	<10	<10	24	28	23	<10	mg/kg	10	A-T-007s

Client Project Name: Stonestreet Green Solar

Lab Sample ID	23/01472/15	23/01472/16	23/01472/17	23/01472/18	23/01472/19	23/01472/20	23/01472/21			
Client Sample No										
Client Sample ID	WS02	WS02	WS03	WS03	WS04	WS04	WS05			
Depth to Top	0.30	0.80	0.30	1.20	0.30	1.10	0.30			
Depth To Bottom									ion	
Date Sampled	17-Feb-23	17-Feb-23	16-Feb-23	16-Feb-23	17-Feb-23	17-Feb-23	16-Feb-23		Detection	J.
Sample Type	Soil - D	<u> </u>		od ref						
Sample Matrix Code	6AE	5A	3	5A	6AB	3	6AE	Units	Limit of	Method
Asbestos in Soil (inc. matrix) ^										
Asbestos in soil _D #	NAD			A-T-045						
Asbestos Matrix (visual)₀	-	-	-	-	-	-	-			A-T-045
Asbestos Matrix (microscope)⊳	-	-	-	-	-	-	-			A-T-045
Asbestos ACM - Suitable for Water Absorption Test? _D	N/A			A-T-045						

Client Project Name: Stonestreet Green Solar

	1									
Lab Sample ID	23/01472/15	23/01472/16	23/01472/17	23/01472/18	23/01472/19	23/01472/20	23/01472/21			
Client Sample No										
Client Sample ID	WS02	WS02	WS03	WS03	WS04	WS04	WS05			
Depth to Top	0.30	0.80	0.30	1.20	0.30	1.10	0.30			
Depth To Bottom									ion	
Date Sampled	17-Feb-23	17-Feb-23	16-Feb-23	16-Feb-23	17-Feb-23	17-Feb-23	16-Feb-23		etect	Jf
Sample Type	Soil - D		Limit of Detection	Method ref						
Sample Matrix Code	6AE	5A	3	5A	6AB	3	6AE	Units	Limit	Meth
PAH-16MS										
Acenaphthene _A ^{M#}	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-019s
Acenaphthylene _A ^{M#}	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-019s
Anthracene _A ^{M#}	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	mg/kg	0.02	A-T-019s
Benzo(a)anthracene₄ ^{M#}	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	0.04	A-T-019s
Benzo(a)pyrene _A ^{M#}	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	0.04	A-T-019s
Benzo(b)fluoranthene _A ^{M#}	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	0.05	A-T-019s
Benzo(ghi)perylene₄ ^{M#}	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	0.05	A-T-019s
Benzo(k)fluoranthene _A ^{M#}	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	mg/kg	0.07	A-T-019s
Chrysene _A ^{M#}	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	mg/kg	0.06	A-T-019s
Dibenzo(ah)anthracene _A ^{M#}	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	0.04	A-T-019s
Fluoranthene _A ^{M#}	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	mg/kg	0.08	A-T-019s
Fluorene ^{A^{M#}}	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-019s
Indeno(123-cd)pyrene ^{AM#}	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	0.03	A-T-019s
Naphthalene A ^{M#}	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	0.03	A-T-019s
Phenanthrene _A ^{M#}	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	0.03	A-T-019s
Pyrene _A ^{M#}	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	mg/kg	0.07	A-T-019s
Total PAH-16MS _A ^{M#}	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	mg/kg	0.01	A-T-019s

Client Project Name: Stonestreet Green Solar

Lab Sample ID	23/01472/22	23/01472/23	23/01472/24	23/01472/25	23/01472/26	23/01472/27	23/01472/28			
Client Sample No										
Client Sample ID	WS05	WS06	WS06	WS07	WS07	WS08	WS08			
Depth to Top	1.00	0.30	1.00	0.30	1.00	0.20	1.00			
Depth To Bottom									io	
Date Sampled	16-Feb-23		etect	f						
Sample Type	Soil - D		of De	od re						
Sample Matrix Code	6ABE	3	5A	5A	3	6AE	6A	Units	Limit of Detection	Method ref
% Moisture at <40C _A	19.1	22.8	18.2	18.7	18.2	20.4	20.2	% w/w	0.1	A-T-044
Dry Matter (Dry Solids) at 105C	-	-	-	-	-	-	-	% w/w	0.1	Calc-no stones
% Stones >10mm _A	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	% w/w	0.1	A-T-044
pH _D ^{M#}	8.03	7.71	7.91	7.34	8.25	7.91	5.06	рН	0.01	A-T-031s
Sulphate (water sol 2:1) ^{D^{M#}}	0.21	<0.01	<0.01	<0.01	0.02	<0.01	0.08	g/l	0.01	A-T-026s
Sulphate (acid soluble) _D ^{M#}	500	<400	<200	250	280	480	800	mg/kg	200	A-T-028s
Cyanide (free) _A ^{M#}	<1	<1	<1	<1	<1	<1	<1	mg/kg	1	A-T-042sFCN
Cyanide (complex) ^{M#}	<1	<1	<1	<1	<1	<1	<1	mg/kg	1	Calc
Cyanide (total) _A ^{M#}	<1	<1	<1	<1	<1	<1	<1	mg/kg	1	A-T-042sTCN
Thiocyanate₄	<5	<5	<5	<5	<5	<5	<5	mg/kg	5	A-T-041s
Phenols - Total by HPLC _A	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	mg/kg	0.2	A-T-050s
Sulphide _A	<5	<5	<5	21	<5	<5	<5	mg/kg	5	A-T-043-s
Organic Matter _D ^{M#}	0.6	1.7	0.6	1.0	0.4	3.2	0.5	% w/w	0.1	A-T-032s
SEM (Solvent Extractable Matter) - Dichloromethane _D	-	-	-	-	-	-	-	mg/kg	100	A-T-039s
Arsenic _D ^{M#}	10	7	5	5	9	10	22	mg/kg	1	A-T-024s
Boron (water soluble) _D ^{M#}	1.7	1.1	<1.0	<1.0	<1.0	<1.0	1.7	mg/kg	1	A-T-027s
Cadmium _₽ ^{M#}	2.1	1.3	0.9	0.8	1.2	1.1	1.3	mg/kg	0.5	A-T-024s
Copper _D ^{M#}	28	11	12	6	18	16	30	mg/kg	1	A-T-024s
Chromium _D ^{M#}	27	41	25	23	38	25	34	mg/kg	1	A-T-024s
Chromium (hexavalent)₀	<1	<1	<1	<1	<1	<1	<1	mg/kg	1	A-T-040s
Chromium (trivalent)	27	41	25	23	38	25	34	mg/kg	1	Calc
Lead _D ^{M#}	22	16	11	13	19	22	21	mg/kg	1	A-T-024s
Mercury _D	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	mg/kg	0.17	A-T-024s
Nickel ^{D^{M#}}	66	29	24	21	30	15	41	mg/kg	1	A-T-024s
Selenium _D ^{M#}	<1	<1	<1	1	<1	<1	<1	mg/kg	1	A-T-024s
Zinc _D ^{™#}	96	77	36	36	62	48	87	mg/kg	5	A-T-024s
TPH total (>C6-C40) _A ^{M#}	<10	<10	<10	<10	<10	<10	<10	mg/kg	10	A-T-007s

Client Project Name: Stonestreet Green Solar

Lab Sample ID	23/01472/22	23/01472/23	23/01472/24	23/01472/25	23/01472/26	23/01472/27	23/01472/28			
Client Sample No										
Client Sample ID	WS05	WS06	WS06	WS07	WS07	WS08	WS08			
Depth to Top	1.00	0.30	1.00	0.30	1.00	0.20	1.00			
Depth To Bottom									ion	
Date Sampled	16-Feb-23		Detection	ref						
Sample Type	Soil - D	~		od re						
Sample Matrix Code	6ABE	3	5A	5A	3	6AE	6A	Units	Limit of	Method
Asbestos in Soil (inc. matrix) ^										
Asbestos in soil _p #	NAD			A-T-045						
Asbestos Matrix (visual)₀	-	-	-	-	-	-	-			A-T-045
Asbestos Matrix (microscope)₀	-	-	-	-	-	-	-			A-T-045
Asbestos ACM - Suitable for Water Absorption Test? _D	N/A			A-T-045						

Client Project Name: Stonestreet Green Solar

Lab Sample ID	23/01472/22	23/01472/23	23/01472/24	23/01472/25	23/01472/26	23/01472/27	23/01472/28			
Client Sample No										
Client Sample ID	WS05	WS06	WS06	WS07	WS07	WS08	WS08			
Depth to Top	1.00	0.30	1.00	0.30	1.00	0.20	1.00			
Depth To Bottom									ion	
Date Sampled	16-Feb-23		etect	f						
Sample Type	Soil - D		Limit of Detection	Method ref						
Sample Matrix Code	6ABE	3	5A	5A	3	6AE	6A	Units	Limit	Meth
PAH-16MS										
Acenaphthene₄ ^{M#}	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-019s
Acenaphthylene _A ^{M#}	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-019s
Anthracene _A ^{M#}	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	mg/kg	0.02	A-T-019s
Benzo(a)anthracene ^{A^{M#}}	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	0.04	A-T-019s
Benzo(a)pyrene₄ ^{M#}	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	0.04	A-T-019s
Benzo(b)fluoranthene _A ^{M#}	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	0.05	A-T-019s
Benzo(ghi)perylene _A ^{M#}	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	0.05	A-T-019s
Benzo(k)fluoranthene _A ^{M#}	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	mg/kg	0.07	A-T-019s
Chrysene _A ^{M#}	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	mg/kg	0.06	A-T-019s
Dibenzo(ah)anthracene _A ^{M#}	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	0.04	A-T-019s
Fluoranthene _A ^{M#}	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	mg/kg	0.08	A-T-019s
Fluorene _A ^{M#}	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-019s
Indeno(123-cd)pyrene _A ^{M#}	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	0.03	A-T-019s
Naphthalene A ^{M#}	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	0.03	A-T-019s
Phenanthrene _A ^{M#}	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	0.03	A-T-019s
Pyrene _A ^{M#}	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	mg/kg	0.07	A-T-019s
Total PAH-16MS _A ^{M#}	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	mg/kg	0.01	A-T-019s

Client Project Name: Stonestreet Green Solar

					ollent i to	 -			
Lab Sample ID	23/01472/29	23/01472/30	23/01472/31	23/01472/32					
Client Sample No									
Client Sample ID	WS09	WS09	WS10	WS10					
Depth to Top	0.40	1.00	0.40	1.20					
Depth To Bottom								ы	
Date Sampled	17-Feb-23	17-Feb-23	17-Feb-23	17-Feb-23				etecti	
Sample Type	Soil - D	Soil - D	Soil - D	Soil - D				of De	od rei
Sample Matrix Code	3	3	5A	3			Units	Limit of Detection	Method ref
% Moisture at <40C _A	22.9	20.6	19.5	23.0			% w/w	0.1	A-T-044
Dry Matter (Dry Solids) at 105C	-	-	-	-			% w/w	0.1	Calc-no stones
% Stones >10mm _A	<0.1	<0.1	<0.1	<0.1			% w/w	0.1	A-T-044
pH₀ ^{M#}	7.43	7.95	7.25	7.55			pН	0.01	A-T-031s
Sulphate (water sol 2:1) ^{D^{M#}}	<0.01	<0.01	<0.01	<0.01			g/l	0.01	A-T-026s
Sulphate (acid soluble) ^{DM#}	420	<200	<200	<200			mg/kg	200	A-T-028s
Cyanide (free) _A ^{M#}	<1	<1	<1	<1			mg/kg	1	A-T-042sFCN
Cyanide (complex) ^{M#}	<1	<1	<1	<1			mg/kg	1	Calc
Cyanide (total) _A ^{M#}	<1	<1	<1	<1			mg/kg	1	A-T-042sTCN
Thiocyanate _A	<5	<5	9	<5			mg/kg	5	A-T-041s
Phenols - Total by HPLC _A	<0.2	<0.2	<0.2	<0.2			mg/kg	0.2	A-T-050s
Sulphide _A	370	<5	<5	<5			mg/kg	5	A-T-043-s
Organic Matter _D ^{M#}	1.7	0.6	0.4	0.3			% w/w	0.1	A-T-032s
SEM (Solvent Extractable Matter) - Dichloromethane _D	-	-	-	-			mg/kg	100	A-T-039s
Arsenic ^{D^{M#}}	2	3	11	5			mg/kg	1	A-T-024s
Boron (water soluble) _D ^{M#}	<1.0	<1.0	<1.0	<1.0			mg/kg	1	A-T-027s
Cadmium _D ^{M#}	1.0	1.0	0.8	0.7			mg/kg	0.5	A-T-024s
Copper _D ^{M#}	11	7	7	9			mg/kg	1	A-T-024s
Chromium _D ^{M#}	35	30	15	23			mg/kg	1	A-T-024s
Chromium (hexavalent) _D	<1	<1	<1	<1			mg/kg	1	A-T-040s
Chromium (trivalent)	35	30	15	23			mg/kg	1	Calc
Lead _D ^{M#}	13	11	13	19			mg/kg	1	A-T-024s
Mercury⊳	<0.17	<0.17	<0.17	<0.17			mg/kg	0.17	A-T-024s
Nickel ^{D^{M#}}	22	26	36	31			mg/kg	1	A-T-024s
Selenium _D ^{M#}	<1	<1	<1	<1			mg/kg	1	A-T-024s
Zinc ^{D^{M#}}	64	61	23	40			mg/kg	5	A-T-024s
TPH total (>C6-C40)A ^{M#}	<10	<10	<10	<10			mg/kg	10	A-T-007s

Client Project Name: Stonestreet Green Solar

Client	Project	Ref:	GM12014
Onone	110,000		01112014

Lab Sample ID	23/01472/29	23/01472/30	23/01472/31	23/01472/32				
Client Sample No								
Client Sample ID	WS09	WS09	WS10	WS10				
Depth to Top	0.40	1.00	0.40	1.20				
Depth To Bottom							io	
Date Sampled	17-Feb-23	17-Feb-23	17-Feb-23	17-Feb-23			Detection	ref
Sample Type	Soil - D	Soil - D	Soil - D	Soil - D				od re
Sample Matrix Code	3	3	5A	3		Units	Limit of	Method
Asbestos in Soil (inc. matrix) ^								
Asbestos in soil _d #	NAD	NAD	NAD	NAD				A-T-045
Asbestos Matrix (visual)₀	-	-	-	-				A-T-045
Asbestos Matrix (microscope) _D	-	-	-	-				A-T-045
Asbestos ACM - Suitable for Water Absorption Test? _D	N/A	N/A	N/A	N/A				A-T-045

Client Project Name: Stonestreet Green Solar

				1	-	-	1	-		
Lab Sample ID	23/01472/29	23/01472/30	23/01472/31	23/01472/32						
Client Sample No										
Client Sample ID	WS09	WS09	WS10	WS10						
Depth to Top	0.40	1.00	0.40	1.20						
Depth To Bottom									ion	
Date Sampled	17-Feb-23	17-Feb-23	17-Feb-23	17-Feb-23					etect	-
Sample Type	Soil - D	Soil - D	Soil - D	Soil - D					Limit of Detection	od re
Sample Matrix Code	3	3	5A	3				Units	Limit	Method ref
PAH-16MS										
Acenaphthene _A ^{M#}	<0.01	<0.01	<0.01	<0.01				mg/kg	0.01	A-T-019s
Acenaphthylene₄ ^{M#}	<0.01	<0.01	<0.01	<0.01				mg/kg	0.01	A-T-019s
Anthracene _A ^{M#}	<0.02	<0.02	<0.02	<0.02				mg/kg	0.02	A-T-019s
Benzo(a)anthracene ^{AM#}	<0.04	<0.04	<0.04	<0.04				mg/kg	0.04	A-T-019s
Benzo(a)pyrene _A ^{M#}	<0.04	<0.04	<0.04	<0.04				mg/kg	0.04	A-T-019s
Benzo(b)fluoranthene _A ^{M#}	<0.05	<0.05	<0.05	<0.05				mg/kg	0.05	A-T-019s
Benzo(ghi)perylene _A ^{M#}	<0.05	<0.05	<0.05	<0.05				mg/kg	0.05	A-T-019s
Benzo(k)fluoranthene _A ^{M#}	<0.07	<0.07	<0.07	<0.07				mg/kg	0.07	A-T-019s
Chrysene _A ^{M#}	<0.06	<0.06	<0.06	<0.06				mg/kg	0.06	A-T-019s
Dibenzo(ah)anthracene _A ^{M#}	<0.04	<0.04	<0.04	<0.04				mg/kg	0.04	A-T-019s
Fluoranthene _A ^{M#}	<0.08	<0.08	<0.08	<0.08				mg/kg	0.08	A-T-019s
Fluorene₄ ^{M#}	<0.01	<0.01	<0.01	<0.01				mg/kg	0.01	A-T-019s
Indeno(123-cd)pyrene _A ^{M#}	<0.03	<0.03	<0.03	<0.03				mg/kg	0.03	A-T-019s
Naphthalene A ^{M#}	<0.03	<0.03	<0.03	<0.03				mg/kg	0.03	A-T-019s
Phenanthrene _A ^{M#}	<0.03	<0.03	<0.03	<0.03				mg/kg	0.03	A-T-019s
Pyrene _A ^{M#}	<0.07	<0.07	<0.07	<0.07				mg/kg	0.07	A-T-019s
Total PAH-16MS₄ ^{M#}	<0.08	<0.08	<0.08	<0.08				mg/kg	0.01	A-T-019s

REPORT NOTES

General

This report shall not be reproduced, except in full, without written approval from Envirolab.

The results reported herein relate only to the material supplied to the laboratory. The residue of any samples contained within this report, and any received with the same delivery, will be disposed of six weeks after samples tested for Asbestos we will retain a portion of the dried sample for a minimum of six months after the initial Asbestos testin initial scheduling For initial Asbestos testing is completed. Analytical results reflect the quality of the sample at the time of analysis only.

Opinions and interpretations expressed are outside the scope of our accreditation.

If results are in italic font they are associated with an AQC failure, these are not accredited and are unreliable.

A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an

accurate record of the concentration at the time of sampling and, as a result, may be invalid. The Client Sample No, Client Sample ID, Depth to Top, Depth to Bottom and Date Sampled were all provided by the client.

Soil chemical analysis:

All results are reported as dry weight (<40°C).

For samples with Matrix Codes 1 - 6 natural stones, brick and concrete fragments >10mm and any extraneous material (visible glass, metal or twigs) are removed and excluded from the sample prior to analysis and reported results corrected to a whole sample basis. This is reported as '% stones >10mm'. For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis and this supersedes any "A" subscripts All analysis is performed on the sample as received for soil samples which are positive for asbestos or the client has informed asbestos may be present and/or if they are from outside the European Union and this supersedes any "D" subscripts.

TPH analysis of water by method A-T-007:

Free and visible oils are excluded from the sample used for analysis so that the reported result represents the dissolved phase only

Electrical Conductivity of water by Method A-T-037:

Results greater than 12900µS/cm @ 25°C / 11550µS/cm @ 20°C fall outside the calibration range and as such are unaccredited.

Asbestos:

Asbestos in soil analysis is performed on a dried aliquot of the submitted sample and cannot guarantee to identify asbestos if only present in small numbers as discrete fibres/fragments in the original sample.

Stones etc. are not removed from the sample prior to analysis.

Quantification of asbestos is a 3 stage process including visual identification, hand picking and weighing and fibre counting by sedimentation/phase contrast optical microscopy if required. If asbestos is identified as being present but is not in a form that is suitable for analysis by hand picking and weighing (normally if the asbestos is present as free fibres) quantification by sedimentation is performed. Where ACMs are found a percentage asbestos is assigned to each with reference to 'HSG264, Asbestos: The survey guide' and the calculated asbestos content is expressed as a percentage of the dried soil sample aliquot used.

Predominant Matrix Codes:

1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample, 9 = INCINERATOR ASH. Samples with Matrix Code 7 & 8 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our BSEN 17025 or MCERTS accreditations, with the exception of bulk asbestos which are BSEN 17025 accredited.

Secondary Matrix Codes: A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal,

E = contains roots/twigs.

Key:

IS indicates Insufficient Sample for analysis.

US indicates Unsuitable Sample for analysis.

NDP indicates No Determination Possible. NAD indicates No Asbestos Detected.

N/A indicates Not Applicable.

Superscript # indicates method accredited to ISO 17025.

Superscript "M" indicates method accredited to MCERTS.

Subscript "A" indicates analysis performed on the sample as received.

Subscript "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve

Subscript "^" indicates analysis has dependent options against results. Testing dependent on results appear in the comments area of your sample receipt. EPH CWG results have humics mathematically subtracted through instrument calculation TPH results "with Cleanup" indicates results cleaned up with Silica during extraction

EPH CWG GCxGC ID from TPH CWG

Where we have identified humic substances in any ID's from TPH CWG with Clean Up please note that the concentration of these

humic substances is not included in the quantified results and are included in the ID for information.

Please contact us if you need any further information.

Envirolab Deviating Samples Report

Units 7&8 Sandpits Business Park, Mottram Road, Hyde, SK14 3AR Tel. 0161 368 4921 email. ask@envlab.co.uk

Client:	Wardell Armstrong (Bolton), 41-50 Futura Park, Aspinall Way, Middlebrook,	Project No:	23/01472
	Bolton, Lancashire, UK, BL6 6SU	Date Received:	21/02/2023 (am)
Project:	Stonestreet Green Solar	Cool Box Temperatures (°C)	: 12.9, 11.5, 12.0, 12.5
Clients Project No	: GM12014		

NO DEVIATIONS IDENTIFIED with respect to sampling dates or containers received.

Note: If, at any point before reaching the laboratory, the temperature of the samples has breached those set in published standards, e.g. BS-EN 5667-3 (for water samples 5 ± 3°C), ISO 18400-105:2017, then the concentration of any affected analytes may differ from that at the time of sampling.

Envirolab Analysis Dates

Lab Sample ID	23/01472/1	23/01472/2	23/01472/3	23/01472/4	23/01472/5	23/01472/6	23/01472/7	23/01472/8	23/01472/9	23/01472/10	23/01472/11	23/01472/12
Client Sample No												
Client Sample ID/Depth	TP01 0.30m	TP01 2.00m	TP02 0.30m	TP02 1.00m	TP03 0.30m	TP03 1.00m	TP04 0.30m	TP04 1.00m	TP05ws 0.30m	TP05ws 1.00m	TP06 0.30m	TP06 1.00m
Date Sampled	15/02/23	15/02/23	15/02/23	15/02/23	15/02/23	15/02/23	15/02/23	15/02/23	16/02/23	16/02/23	15/02/23	15/02/23
A-T-007s	24/02/2023	24/02/2023	24/02/2023	24/02/2023	24/02/2023	24/02/2023	24/02/2023	24/02/2023	24/02/2023	24/02/2023	24/02/2023	24/02/2023
A-T-019s	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023
A-T-024s	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023
A-T-026s	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023
A-T-027s	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023
A-T-028s	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023
A-T-031s	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023
A-T-032s	03/03/2023	03/03/2023	03/03/2023	03/03/2023	03/03/2023	03/03/2023	03/03/2023	03/03/2023	03/03/2023	03/03/2023	03/03/2023	03/03/2023
A-T-039s	02/03/2023	02/03/2023	02/03/2023	02/03/2023	02/03/2023	02/03/2023	02/03/2023	02/03/2023	02/03/2023	02/03/2023	02/03/2023	02/03/2023
A-T-040s	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023
A-T-041s	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023
A-T-042sFCN	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023
A-T-042sTCN	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023
A-T-043-s	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023
A-T-044	02/03/2023	02/03/2023	02/03/2023	02/03/2023	02/03/2023	02/03/2023	02/03/2023	02/03/2023	02/03/2023	02/03/2023	02/03/2023	02/03/2023
A-T-045	22/02/2023	22/02/2023	22/02/2023	22/02/2023	22/02/2023	22/02/2023	22/02/2023	22/02/2023	22/02/2023	22/02/2023	22/02/2023	22/02/2023
A-T-050s	24/02/2023	24/02/2023	27/02/2023	24/02/2023	24/02/2023	24/02/2023	24/02/2023	24/02/2023	24/02/2023	24/02/2023	24/02/2023	24/02/2023
Calc	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023
Calc-no stones	02/03/2023	02/03/2023	02/03/2023	02/03/2023	02/03/2023	02/03/2023	02/03/2023	02/03/2023	02/03/2023	02/03/2023	02/03/2023	02/03/2023

Lab Sample ID	23/01472/13	23/01472/14	23/01472/15	23/01472/16	23/01472/17	23/01472/18	23/01472/19	23/01472/20	23/01472/21	23/01472/22	23/01472/23	23/01472/24
Client Sample No												
Client Sample ID/Depth	WS01 0.30m	WS01 1.20m	WS02 0.30m	WS02 0.80m	WS03 0.30m	WS03 1.20m	WS04 0.30m	WS04 1.10m	WS05 0.30m	WS05 1.00m	WS06 0.30m	WS06 1.00m
Date Sampled	17/02/23	17/02/23	17/02/23	17/02/23	16/02/23	16/02/23	17/02/23	17/02/23	16/02/23	16/02/23	16/02/23	16/02/23
A-T-007s	24/02/2023	24/02/2023	24/02/2023	24/02/2023	24/02/2023	24/02/2023	24/02/2023	24/02/2023	24/02/2023	24/02/2023	24/02/2023	24/02/2023
A-T-019s	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023
A-T-024s	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023
A-T-026s	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023
A-T-027s	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023
A-T-028s	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023
A-T-031s	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023
A-T-032s	03/03/2023	03/03/2023	03/03/2023	03/03/2023	02/03/2023	02/03/2023	02/03/2023	02/03/2023	02/03/2023	02/03/2023	02/03/2023	02/03/2023
A-T-039s	02/03/2023	02/03/2023	02/03/2023	02/03/2023	02/03/2023	02/03/2023	02/03/2023	02/03/2023	02/03/2023	02/03/2023	02/03/2023	02/03/2023
A-T-040s	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023
A-T-041s	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023
A-T-042sFCN	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023
A-T-042sTCN	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023
A-T-043-s	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023
A-T-044	02/03/2023	02/03/2023	02/03/2023	02/03/2023	02/03/2023	02/03/2023	02/03/2023	02/03/2023	02/03/2023	02/03/2023	02/03/2023	02/03/2023
A-T-045	22/02/2023	22/02/2023	22/02/2023	22/02/2023	22/02/2023	22/02/2023	22/02/2023	22/02/2023	22/02/2023	22/02/2023	22/02/2023	22/02/2023
A-T-050s	24/02/2023	24/02/2023	24/02/2023	24/02/2023	24/02/2023	24/02/2023	24/02/2023	24/02/2023	24/02/2023	24/02/2023	24/02/2023	24/02/2023
Calc	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023
Calc-no stones	02/03/2023	02/03/2023	02/03/2023	02/03/2023	02/03/2023	02/03/2023	02/03/2023	02/03/2023	02/03/2023	02/03/2023	02/03/2023	02/03/2023

Lab Sample ID	23/01472/25	23/01472/26	23/01472/27	23/01472/28	23/01472/29	23/01472/30	23/01472/31	23/01472/32
Client Sample No								
Client Sample ID/Depth	WS07 0.30m	WS07 1.00m	WS08 0.20m	WS08 1.00m	WS09 0.40m	WS09 1.00m	WS10 0.40m	WS10 1.20m
Date Sampled	16/02/23	16/02/23	16/02/23	16/02/23	17/02/23	17/02/23	17/02/23	17/02/23
A-T-007s	24/02/2023	24/02/2023	24/02/2023	24/02/2023	24/02/2023	24/02/2023	24/02/2023	24/02/2023
A-T-019s	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023
A-T-024s	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023
A-T-026s	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023
A-T-027s	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023
A-T-028s	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023
A-T-031s	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023
A-T-032s	02/03/2023	02/03/2023	02/03/2023	02/03/2023	02/03/2023	02/03/2023	02/03/2023	02/03/2023
A-T-039s	02/03/2023	02/03/2023	02/03/2023	02/03/2023	02/03/2023	02/03/2023	02/03/2023	02/03/2023
A-T-040s	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023
A-T-041s	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023
A-T-042sFCN	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023
A-T-042sTCN	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023
A-T-043-s	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023	23/02/2023
A-T-044	02/03/2023	02/03/2023	02/03/2023	02/03/2023	02/03/2023	02/03/2023	02/03/2023	02/03/2023
A-T-045	22/02/2023	22/02/2023	22/02/2023	22/02/2023	22/02/2023	22/02/2023	22/02/2023	22/02/2023
A-T-050s	24/02/2023	24/02/2023	24/02/2023	24/02/2023	24/02/2023	24/02/2023	24/02/2023	24/02/2023
Calc	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023
Calc-no stones	02/03/2023	02/03/2023	02/03/2023	02/03/2023	02/03/2023	02/03/2023	02/03/2023	02/03/2023

The above dates are the analysis completion dates, please note that these are not necessarily the date that the analysis was weighed/extracted.

End of Report

Annex E

Environmental Monitoring Data Sheet

Client:	EPL 001	Job No:		GM12014	
Site:	Stonestreet Solar	Visit No:	1	of	1
Date:	06/04/2023	Operator:		-	

			GAS CONCENTRATIONS					VOLATILES FLOW DATA			WELL AND WATER DATA				Comments			
Monitoring Point	Methan	e (%v/v)		dioxide v/v)	monoxide	Hydrogen sulphide (ppm)	Охуден	n (%v/v)	PID Peak (ppm)	Product thickness (mm)	Flow ra	ate (l/hr)	Differential borehole	Water level (mbgl)	Depth of well (m)	Reduced level	Water level (mAOD)	
	Peak	Steady	Peak	Steady	Peak	Peak	Min	Steady			Peak	Steady	Pressure (Pa)			(mAOD)		
WS1	-0.10	-0.10	6.20	6.00	0.00	0.00	9.90	20.20	0.90		0.00	0.00		1.80				
WS5	-0.10	-0.10	0.70	0.60	0.00	0.00	20.30	20.30			0.00	0.00		0.72				
WS6	0.00	0.00	0.80	0.80	0.00	0.00	18.30	18.30	1.00		15.60	0.00		0.82				
WS7	0.10	0.10	1.50	1.50	0.00	0.00	13.60	13.60	1.00		0.00	0.00		1.03				
WS9	-0.10	-0.10	1.60	1.50	0.00	0.00	16.50	16.50	0.90		0.00	0.00		0.88				
WS10	0.00	0.00	0.20	0.10	0.00	0.00	20.50	20.50	1.00		0.00	0.00		0.36				
Max	0.1	0.1	6.2	6	0	0	20.5	20.5	1	0	15.6	0	0	1.8			0.00	
Min	-0.1	-0.1	0.2	0.1	0	0	9.9	13.6	0.9	0	0	0	0	0.36			0.00	
GSV (l/hr)	0.0	156	0.9	672														

METEOROLOGICAL AND SITE INFORMATION:

State of ground:	х	Dry	
Wind:	Х	Calm	
Cloud cover:		None	Х
Preciptation:	Х	None	
Barometric pressure (mbar):			
Pressure trend:		Falling	

	Wet
	Moderate
Х	Cloudy
	Moderate
	Before
	Steady

Frozen

Station:

Ground gas meter: Date of last calibration:

Gas Data GFM-436 22/03/2023